LncRNA MIR4435-2HG drives cancer progression by modulating cell cycle regulators and mTOR signaling in stroma-enriched subtypes of urothelial carcinoma of the bladder.
Cell Oncol (Dordr)
; 46(5): 1509-1527, 2023 Oct.
Article
em En
| MEDLINE
| ID: mdl-37355516
BACKGROUND: The risk for recurrence and metastasis after treatment for urothelial carcinoma of the bladder (UCB) is high. Therefore, identifying efficient prognostic markers and novel therapeutic targets is urgently needed. Several long noncoding RNAs (lncRNAs) have been reported to be correlated with UCB progression. In this study, we found that the subtype-specific lncRNA MIR4435-2 host gene (MIR4435-2HG) plays a novel oncogenic role in UCB. METHODS: RNA-Seq data of TCGA/BLCA were analyzed. The expression of MIR4435-2HG was measured by qRT-PCR in 16 pairs of bladder cancer tissues and adjacent normal tissues. The clinical relecance of MIR4435-2HG was validated via in situ hybridization performed on an in-house cohort of 116 UCB patient samples. RNA pull-down followed by mass spectrometry was performed to identify MIR4435-2HG-binding proteins. To identify signaling pathways involved in MIR4435-2HG activity, comprehensive in vitro and in vivo studies and RNA-Seq assays were performed using UCB cells in which MIR4435-2HG expression was knocked down or exogenously overexpressed. In addition, we performed RNA immunoprecipitation and Western blot analyses to validate the identified MIR4435-2HG-binding proteins and to determine the molecular mechanisms by which MIR4435-2HG promotes UCB progression. RESULTS: We found that MIR4435-2HG was significantly upregulated in the stromal-enriched subtype of UCB. Increased MIR4435-2HG expression was positively correlated with a high histological grade, advanced T stages, larger tumors, lymph node metastasis and a poor prognosis. In vitro experiments revealed that MIR4435-2HG expression silencing suppressed cell proliferation and induced apoptosis. Inhibition of MIR4434-2HG delayed xenograft tumor growth, while MIR4435-2HG overexpression reversed the MIR4435-2HG silencing-induced inhibition of UCB tumor phenotype acquisition. Mechanistically, we found that MIR4435-2HG positively regulated the expression of a variety of cell cycle regulators, including BRCA2 and CCND1. Knocking down MIR4435-2HG increased the sensitivity of tumor cells to the VEGFR inhibitor cediranib. Furthermore, we found that MIR4435-2HG regulated mTOR signaling and epithelial-mesenchymal transition (EMT) signaling pathways by modulating the phosphorylation of mTOR, 70S6K and 4EBP1. Finally, we confirmed that MIR4435-2HG enhances tumor metastasis through regulation of the EMT pathway. CONCLUSIONS: Our data indicate that upregulated MIR4435-2HG expression levels are significantly correlated with a poor prognosis of UCB patients. MIR4435-2HG promotes bladder cancer progression, mediates cell cycle (de)regulation and modulates mTOR signaling. MIR4435-2HG is an oncogenic lncRNA in UCB that may serve as a diagnostic and therapeutic target.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Neoplasias da Bexiga Urinária
/
Carcinoma de Células de Transição
/
RNA Longo não Codificante
Limite:
Humans
Idioma:
En
Revista:
Cell Oncol (Dordr)
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
China
País de publicação:
Holanda