Your browser doesn't support javascript.
loading
Validation of Electronic Health Record-Based Algorithms to Identify Specialist Palliative Care Within the Department of Veterans Affairs.
Feder, Shelli L; Zhan, Yan; Abel, Erica A; Smith, Dawn; Ersek, Mary; Fried, Terri; Redeker, Nancy S; Akgün, Kathleen M.
Afiliação
  • Feder SL; Yale School of Nursing (S.L.F., Y.Z.), Orange, Connecticut, USA; VA Connecticut Healthcare System (S.L.F., E.A.A., T.F., K.M.A.), West Haven, Connecticut, USA. Electronic address: shelli.feder@yale.edu.
  • Zhan Y; Yale School of Nursing (S.L.F., Y.Z.), Orange, Connecticut, USA.
  • Abel EA; VA Connecticut Healthcare System (S.L.F., E.A.A., T.F., K.M.A.), West Haven, Connecticut, USA; Yale School of Medicine (E.A.C., T.F., K.M.A.), Orange, Connecticut, USA.
  • Smith D; Veterans Experience Center, Corporal Michael J. Crescenz VA Medical Center (D.S., M.E.), Philadelphia, Pennsylvania, USA.
  • Ersek M; Veterans Experience Center, Corporal Michael J. Crescenz VA Medical Center (D.S., M.E.), Philadelphia, Pennsylvania, USA; University of Pennsylvania School of Nursing (M.E.), Philadelphia, Pennsylvania, USA.
  • Fried T; VA Connecticut Healthcare System (S.L.F., E.A.A., T.F., K.M.A.), West Haven, Connecticut, USA; Yale School of Medicine (E.A.C., T.F., K.M.A.), Orange, Connecticut, USA; Yale Program on Aging (T.F.), New Haven, Connecticut, USA.
  • Redeker NS; University of Connecticut School of Nursing (N.S.R.), Storrs, Connecticut, USA.
  • Akgün KM; VA Connecticut Healthcare System (S.L.F., E.A.A., T.F., K.M.A.), West Haven, Connecticut, USA; Yale School of Medicine (E.A.C., T.F., K.M.A.), Orange, Connecticut, USA.
J Pain Symptom Manage ; 66(4): e475-e483, 2023 10.
Article em En | MEDLINE | ID: mdl-37364737
BACKGROUND: The measurement of specialist palliative care (SPC) across Department of Veterans Affairs (VA) facilities relies on algorithms applied to administrative databases. However, the validity of these algorithms has not been systematically assessed. MEASURES: In a cohort of people with heart failure identified by ICD 9/10 codes, we validated the performance of algorithms to identify SPC consultation in administrative data and differentiate outpatient from inpatient encounters. INTERVENTION: We derived separate samples of people by receipt of SPC using combinations of stop codes signifying specific clinics, current procedural terminology (CPT), a variable representing encounter location, and ICD-9/ICD-10 codes for SPC. We calculated sensitivity, specificity, and positive and negative predictive values (PPV, NPV) for each algorithm using chart review as the reference standard. OUTCOMES: Among 200 people who did and did not receive SPC (mean age = 73.9 years (standard deviation [SD] = 11.5), 98% male, 73% White), the validity of the stop code plus CPT algorithm to identify any SPC consultation was: Sensitivity = 0.89 (95% Confidence Interval [CI] 0.82-0.94), Specificity = 1.0 [0.96-1.0], PPV = 1.0 [0.96-1.0], NPV = 0.93 [0.86-0.97]. The addition of ICD codes increased sensitivity but decreased specificity. Among 200 people who received SPC (mean age = 74.2 years [SD = 11.8], 99% male, 71% White), algorithm performance in differentiating outpatient from inpatient encounters was: Sensitivity = 0.95 (0.88-0.99), Specificity = 0.81 (0.72-0.87), PPV = 0.38 (0.29-0.49), and NPV = 0.99 (0.95-1.0). Adding encounter location improved the sensitivity and specificity of this algorithm. CONCLUSIONS: VA algorithms are highly sensitive and specific in identifying SPC and in differentiating outpatient from inpatient encounters. These algorithms can be used with confidence to measure SPC in quality improvement and research across the VA.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Veteranos Tipo de estudo: Prognostic_studies Limite: Aged / Female / Humans / Male Idioma: En Revista: J Pain Symptom Manage Assunto da revista: NEUROLOGIA / PSICOFISIOLOGIA / TERAPEUTICA Ano de publicação: 2023 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Veteranos Tipo de estudo: Prognostic_studies Limite: Aged / Female / Humans / Male Idioma: En Revista: J Pain Symptom Manage Assunto da revista: NEUROLOGIA / PSICOFISIOLOGIA / TERAPEUTICA Ano de publicação: 2023 Tipo de documento: Article País de publicação: Estados Unidos