Longitudinal Prediction of Postnatal Brain Magnetic Resonance Images via a Metamorphic Generative Adversarial Network.
Pattern Recognit
; 1432023 Nov.
Article
em En
| MEDLINE
| ID: mdl-37425426
Missing scans are inevitable in longitudinal studies due to either subject dropouts or failed scans. In this paper, we propose a deep learning framework to predict missing scans from acquired scans, catering to longitudinal infant studies. Prediction of infant brain MRI is challenging owing to the rapid contrast and structural changes particularly during the first year of life. We introduce a trustworthy metamorphic generative adversarial network (MGAN) for translating infant brain MRI from one time-point to another. MGAN has three key features: (i) Image translation leveraging spatial and frequency information for detail-preserving mapping; (ii) Quality-guided learning strategy that focuses attention on challenging regions. (iii) Multi-scale hybrid loss function that improves translation of image contents. Experimental results indicate that MGAN outperforms existing GANs by accurately predicting both tissue contrasts and anatomical details.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Observational_studies
/
Prognostic_studies
/
Risk_factors_studies
Idioma:
En
Revista:
Pattern Recognit
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
China
País de publicação:
Reino Unido