Your browser doesn't support javascript.
loading
AL4GAP: Active learning workflow for generating DFT-SCAN accurate machine-learning potentials for combinatorial molten salt mixtures.
Guo, Jicheng; Woo, Vanessa; Andersson, David A; Hoyt, Nathaniel; Williamson, Mark; Foster, Ian; Benmore, Chris; Jackson, Nicholas E; Sivaraman, Ganesh.
Afiliação
  • Guo J; Chemical and Fuel Cycle Technologies Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
  • Woo V; School of Electrical, Computer, Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA.
  • Andersson DA; Materials Science and Technology Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA.
  • Hoyt N; Chemical and Fuel Cycle Technologies Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
  • Williamson M; Chemical and Fuel Cycle Technologies Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
  • Foster I; Data Science and Learning Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
  • Benmore C; X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
  • Jackson NE; Department of Chemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA.
  • Sivaraman G; Data Science and Learning Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
J Chem Phys ; 159(2)2023 Jul 14.
Article em En | MEDLINE | ID: mdl-37428051
Machine learning interatomic potentials have emerged as a powerful tool for bypassing the spatiotemporal limitations of ab initio simulations, but major challenges remain in their efficient parameterization. We present AL4GAP, an ensemble active learning software workflow for generating multicomposition Gaussian approximation potentials (GAP) for arbitrary molten salt mixtures. The workflow capabilities include: (1) setting up user-defined combinatorial chemical spaces of charge neutral mixtures of arbitrary molten mixtures spanning 11 cations (Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba and two heavy species, Nd, and Th) and 4 anions (F, Cl, Br, and I), (2) configurational sampling using low-cost empirical parameterizations, (3) active learning for down-selecting configurational samples for single point density functional theory calculations at the level of Strongly Constrained and Appropriately Normed (SCAN) exchange-correlation functional, and (4) Bayesian optimization for hyperparameter tuning of two-body and many-body GAP models. We apply the AL4GAP workflow to showcase high throughput generation of five independent GAP models for multicomposition binary-mixture melts, each of increasing complexity with respect to charge valency and electronic structure, namely: LiCl-KCl, NaCl-CaCl2, KCl-NdCl3, CaCl2-NdCl3, and KCl-ThCl4. Our results indicate that GAP models can accurately predict structure for diverse molten salt mixture with density functional theory (DFT)-SCAN accuracy, capturing the intermediate range ordering characteristic of the multivalent cationic melts.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: J Chem Phys Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: J Chem Phys Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos