Your browser doesn't support javascript.
loading
Single-atom Mo-Co catalyst with low biotoxicity for sustainable degradation of high-ionization-potential organic pollutants.
Chen, Zhuan; An, Faliang; Zhang, Yayun; Liang, Zhiyan; Liu, Wenyuan; Xing, Mingyang.
Afiliação
  • Chen Z; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, Ch
  • An F; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
  • Zhang Y; Shanghai Engineering Research Center for Multimedia Environmental Catalysis and Resource Utilization, East China University of Science and Technology, Shanghai 200237, China.
  • Liang Z; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, Ch
  • Liu W; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, Ch
  • Xing M; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, Ch
Proc Natl Acad Sci U S A ; 120(29): e2305933120, 2023 Jul 18.
Article em En | MEDLINE | ID: mdl-37428912
Single-atom catalysts (SACs) are a promising area in environmental catalysis. We report on a bimetallic Co-Mo SAC that shows excellent performance in activating peroxymonosulfate (PMS) for sustainable degradation of organic pollutants with high ionization potential (IP > 8.5 eV). Density Functional Theory (DFT) calculations and experimental tests demonstrate that the Mo sites in Mo-Co SACs play a critical role in conducting electrons from organic pollutants to Co sites, leading to a 19.4-fold increase in the degradation rate of phenol compared to the CoCl2-PMS group. The bimetallic SACs exhibit excellent catalytic performance even under extreme conditions and show long-term activation in 10-d experiments, efficiently degrading 600 mg/L of phenol. Moreover, the catalyst has negligible toxicity toward MDA-MB-231, Hela, and MCF-7 cells, making it an environmentally friendly option for sustainable water treatment. Our findings have important implications for the design of efficient SACs for environmental remediation and other applications in biology and medicine.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2023 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2023 Tipo de documento: Article País de publicação: Estados Unidos