Your browser doesn't support javascript.
loading
Therapeutic potentials of terbium hydroxide nanorods for amelioration of hypoxia-reperfusion injury in cardiomyocytes.
Basuthakur, Papia; Roy, Arpita; Patra, Chitta Ranjan; Chakravarty, Sumana.
Afiliação
  • Basuthakur P; Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
  • Roy A; Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
  • Patra CR; Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address: crpatra@iict.res.in.
  • Chakravarty S; Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address: sumanachak@iict.res.in.
Biomater Adv ; 153: 213531, 2023 Oct.
Article em En | MEDLINE | ID: mdl-37429046
Myocardial hypoxia reperfusion (H/R) injury is the paradoxical exacerbation of myocardial damage, caused by the sudden restoration of blood flow to hypoxia affected myocardium. It is a critical contributor of acute myocardial infarction, which can lead to cardiac failure. Despite the current pharmacological advancements, clinical translation of cardioprotective therapies have proven challenging. As a result, researchers are looking for alternative approaches to counter the disease. In this regard, nanotechnology, with its versatile applications in biology and medicine, can confer broad prospects for treatment of myocardial H/R injury. Herein, we attempted to explore whether a well-established pro-angiogenic nanoparticle, terbium hydroxide nanorods (THNR) can ameliorate myocardial H/R injury. For this study, in vitro H/R-injury model was established in rat cardiomyocytes (H9c2 cells). Our investigations demonstrated that THNR enhance cardiomyocyte survival against H/R-induced cell death. This pro-survival effect of THNR is associated with reduction of oxidative stress, lipid peroxidation, calcium overload, restoration of cytoskeletal integrity and mitochondrial membrane potential as well as augmentation of cellular anti-oxidant enzymes such as glutathione-s-transferase (GST) and superoxide dismutase (SOD) to counter H/R injury. Molecular analysis revealed that the above observations are traceable to the predominant activation of PI3K-AKT-mTOR and ERK-MEK signalling pathways by THNR. Concurrently, THNR also exhibit apoptosis inhibitory effects mainly by suppression of pro-apoptotic proteins like Cytochrome C, Caspase 3, Bax and p53 with simultaneous restoration of anti-apoptotic protein, Bcl-2 and Survivin. Thus, considering the above attributes, we firmly believe that THNR have the potential to be developed as an alternative approach for amelioration of H/R injury in cardiomyocytes.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Traumatismo por Reperfusão Miocárdica / Nanotubos Limite: Animals Idioma: En Revista: Biomater Adv Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Índia País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Traumatismo por Reperfusão Miocárdica / Nanotubos Limite: Animals Idioma: En Revista: Biomater Adv Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Índia País de publicação: Holanda