Your browser doesn't support javascript.
loading
Effects of the Light/Dark Phase and Constant Light on Spatial Working Memory and Spine Plasticity in the Mouse Hippocampus.
Schröder, Jane K; Abdel-Hafiz, Laila; Ali, Amira A H; Cousin, Teresa C; Hallenberger, Johanna; Rodrigues Almeida, Filipe; Anstötz, Max; Lenz, Maximilian; Vlachos, Andreas; von Gall, Charlotte; Tundo-Lavalle, Federica.
Afiliação
  • Schröder JK; Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
  • Abdel-Hafiz L; Department of Pediatric Hematology and Oncology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
  • Ali AAH; Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
  • Cousin TC; Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
  • Hallenberger J; Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, El-Gomhoria St. 1, Mansoura 35516, Egypt.
  • Rodrigues Almeida F; Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
  • Anstötz M; Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
  • Lenz M; Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
  • Vlachos A; Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
  • von Gall C; Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
  • Tundo-Lavalle F; Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.
Cells ; 12(13)2023 06 30.
Article em En | MEDLINE | ID: mdl-37443792
ABSTRACT
Circadian rhythms in behavior and physiology such as rest/activity and hormones are driven by an internal clock and persist in the absence of rhythmic environmental cues. However, the period and phase of the internal clock are entrained by the environmental light/dark cycle. Consequently, aberrant lighting conditions, which are increasing in modern society, have a strong impact on rhythmic body and brain functions. Mice were exposed to three different lighting conditions, 12 h light/12 h dark cycle (LD), constant darkness (DD), and constant light (LL), to study the effects of the light/dark cycle and aberrant lighting on the hippocampus, a critical structure for temporal and spatial memory formation and navigation. Locomotor activity and plasma corticosterone levels were analyzed as readouts for circadian rhythms. Spatial working memory via Y-maze, spine morphology of Golgi-Cox-stained hippocampi, and plasticity of excitatory synapses, measured by number and size of synaptopodin and GluR1-immunreactive clusters, were analyzed. Our results indicate that the light/dark cycle drives diurnal differences in synaptic plasticity in hippocampus. Moreover, spatial working memory, spine density, and size and number of synaptopodin and GluR1 clusters were reduced in LL, while corticosterone levels were increased. This indicates that acute constant light affects hippocampal function and synaptic plasticity.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Memória Espacial / Luz Limite: Animals Idioma: En Revista: Cells Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Memória Espacial / Luz Limite: Animals Idioma: En Revista: Cells Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Alemanha