Your browser doesn't support javascript.
loading
High-Efficiency Removal of Lead and Nickel Using Four Inert Dry Biomasses: Insights into the Adsorption Mechanisms.
Tejada-Tovar, Candelaria; Villabona-Ortíz, Angel; González-Delgado, Ángel Darío.
Afiliação
  • Tejada-Tovar C; Process Design and Biomass Utilization Research Group (IDAB), Chemical Engineering Department, Universidad de Cartagena, Avenida del Consulado St. 30, Cartagena de Indias 130015, Colombia.
  • Villabona-Ortíz A; Process Design and Biomass Utilization Research Group (IDAB), Chemical Engineering Department, Universidad de Cartagena, Avenida del Consulado St. 30, Cartagena de Indias 130015, Colombia.
  • González-Delgado ÁD; Nanomaterials and Computer Aided Process Engineering Research Group (NIPAC), Chemical Engineering Department, Universidad de Cartagena, Avenida del Consulado St. 30, Cartagena de Indias 130015, Colombia.
Materials (Basel) ; 16(13)2023 Jul 07.
Article em En | MEDLINE | ID: mdl-37445198
ABSTRACT
In this study, inert dry bioadsorbents prepared from corn cob residues (CCR), cocoa husk (CH), plantain peels (PP), and cassava peels (CP) were used as adsorbents of heavy metal ions (Pb2+ and Ni2+) in single-batch adsorption experiments from synthetic aqueous solutions. The physicochemical properties of the bioadsorbents and the adsorption mechanisms were evaluated using different experimental techniques. The results showed that electrostatic attraction, cation exchange, and surface complexation were the main mechanisms involved in the adsorption of metals onto the evaluated bioadsorbents. The percentage removal of Pb2+ and Ni2+ increased with higher adsorbent dosage, with Pb2+ exhibiting greater biosorption capacity than Ni2+. The bioadsorbents showed promising potential for adsorbing Pb2+ with monolayer adsorption capacities of 699.267, 568.794, 101.535, and 116.820 mg/g when using PP, CCR, CH, and CP, respectively. For Ni2+, Langmuir's parameter had values of 10.402, 26.984, 18.883, and 21.615, respectively, for PP, CCR, CH, and CP. Kinetics data fitted by the pseudo-second-order model revealed that the adsorption rate follows this order CH > CP > CCR > PP for Pb2+, and CH > CCR > PP > CP for Ni2+. The adsorption mechanism was found to be controlled by ion exchange and precipitation. These findings suggest that the dry raw biomasses of corn cob residues, cocoa husk, cassava, and plantain peels can effectively remove lead and nickel, but further research is needed to explore their application in industrial-scale and continuous systems.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Materials (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Colômbia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Materials (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Colômbia