Your browser doesn't support javascript.
loading
Accelerated somatic mutation calling for whole-genome and whole-exome sequencing data from heterogenous tumor samples.
Ji, Shuangxi; Zhu, Tong; Sethia, Ankit; Wang, Wenyi.
Afiliação
  • Ji S; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
  • Zhu T; NVIDIA Corporation, Santa Clara, CA, USA.
  • Sethia A; NVIDIA Corporation, Santa Clara, CA, USA.
  • Wang W; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
bioRxiv ; 2023 Jul 04.
Article em En | MEDLINE | ID: mdl-37461467
Accurate detection of somatic mutations in DNA sequencing data is a fundamental prerequisite for cancer research. Previous analytical challenge was overcome by consensus mutation calling from four to five popular callers. This, however, increases the already nontrivial computing time from individual callers. Here, we launch MuSE2.0, powered by multi-step parallelization and efficient memory allocation, to resolve the computing time bottleneck. MuSE2.0 speeds up 50 times than MuSE1.0 and 8-80 times than other popular callers. Our benchmark study suggests combining MuSE2.0 and the recently expedited Strelka2 can achieve high efficiency and accuracy in analyzing large cancer genomic datasets.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: BioRxiv Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: BioRxiv Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos