Your browser doesn't support javascript.
loading
Using artificial intelligence to learn optimal regimen plan for Alzheimer's disease.
Bhattarai, Kritib; Rajaganapathy, Sivaraman; Das, Trisha; Kim, Yejin; Chen, Yongbin; Dai, Qiying; Li, Xiaoyang; Jiang, Xiaoqian; Zong, Nansu.
Afiliação
  • Bhattarai K; Luther College, Decorah, Iowa, USA.
  • Rajaganapathy S; Mayo Clinic, Rochester, Minnesota, USA.
  • Das T; University of Illinois Urbana-Champaign, Champaign, Illinois, USA.
  • Kim Y; University of Texas Health Science Center, Houston, Texas, USA.
  • Chen Y; Mayo Clinic, Rochester, Minnesota, USA.
  • Dai Q; Mayo Clinic, Rochester, Minnesota, USA.
  • Li X; Mayo Clinic, Rochester, Minnesota, USA.
  • Jiang X; University of Texas Health Science Center, Houston, Texas, USA.
  • Zong N; Mayo Clinic, Rochester, Minnesota, USA.
J Am Med Inform Assoc ; 30(10): 1645-1656, 2023 09 25.
Article em En | MEDLINE | ID: mdl-37463858
BACKGROUND: Alzheimer's disease (AD) is a progressive neurological disorder with no specific curative medications. Sophisticated clinical skills are crucial to optimize treatment regimens given the multiple coexisting comorbidities in the patient population. OBJECTIVE: Here, we propose a study to leverage reinforcement learning (RL) to learn the clinicians' decisions for AD patients based on the longitude data from electronic health records. METHODS: In this study, we selected 1736 patients from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We focused on the two most frequent concomitant diseases-depression, and hypertension, thus creating 5 data cohorts (ie, Whole Data, AD, AD-Hypertension, AD-Depression, and AD-Depression-Hypertension). We modeled the treatment learning into an RL problem by defining states, actions, and rewards. We built a regression model and decision tree to generate multiple states, used six combinations of medications (ie, cholinesterase inhibitors, memantine, memantine-cholinesterase inhibitors, hypertension drugs, supplements, or no drugs) as actions, and Mini-Mental State Exam (MMSE) scores as rewards. RESULTS: Given the proper dataset, the RL model can generate an optimal policy (regimen plan) that outperforms the clinician's treatment regimen. Optimal policies (ie, policy iteration and Q-learning) had lower rewards than the clinician's policy (mean -3.03 and -2.93 vs. -2.93, respectively) for smaller datasets but had higher rewards for larger datasets (mean -4.68 and -2.82 vs. -4.57, respectively). CONCLUSIONS: Our results highlight the potential of using RL to generate the optimal treatment based on the patients' longitude records. Our work can lead the path towards developing RL-based decision support systems that could help manage AD with comorbidities.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença de Alzheimer Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: J Am Med Inform Assoc Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença de Alzheimer Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: J Am Med Inform Assoc Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido