Your browser doesn't support javascript.
loading
Biocompatible coatings based on photo-crosslinkable cellulose derivatives.
Rothammer, Maximilian; Strobel, Philipp; Zollfrank, Cordt; Urmann, Corinna.
Afiliação
  • Rothammer M; Chair for Biogenic Polymers, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany.
  • Strobel P; TUM Campus Straubing, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany; Organic-Analytical Chemistry, Weihenstephen-Triesdorf University of Applied Sciences, Schulgasse 16, 94315 Straubing, Germany.
  • Zollfrank C; Chair for Biogenic Polymers, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany.
  • Urmann C; TUM Campus Straubing, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany; Organic-Analytical Chemistry, Weihenstephen-Triesdorf University of Applied Sciences, Schulgasse 16, 94315 Straubing, Germany. Electronic address: corinna.urmann@tum.de.
Int J Biol Macromol ; 250: 126063, 2023 Oct 01.
Article em En | MEDLINE | ID: mdl-37524281
ABSTRACT
Materials derived from renewable resources have great potential to replace fossil-based plastics in biomedical applications. In this study, the synthesis of cellulose-based photoresists by esterification with methacrylic acid anhydride and sorbic acid was investigated. These resists polymerize under UV irradiation in the range of λ = 254 nm to 365 nm, with or, in the case of the sorbic acid derivative, without using an additional photoinitiator. Usability for biomedical applications was demonstrated by investigating the adhesion and viability of a fibrosarcoma cell line (HT-1080). Compared to polystyrene, the material widely used for cell culture dishes, cell adhesion to the biomaterials tested was even stronger, as assessed by a centrifugation assay. Remarkably, chemical surface modifications of cellulose acetate with methacrylate and sorbic acid allow direct attachment of HT-1080 cells without adding protein modifiers or ligands. Furthermore, cells on both biomaterials show similar cell viability, not significantly different from polystyrene, indicating no significant impairment or enhancement, allowing the use of these cellulose derivatives as support structures for scaffolds or as a self-supporting coating for cell culture solely based on renewable resources.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Int J Biol Macromol Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Int J Biol Macromol Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Alemanha