Ultrafast exciton fluid flow in an atomically thin MoS2 semiconductor.
Nat Nanotechnol
; 18(9): 1012-1019, 2023 Sep.
Article
em En
| MEDLINE
| ID: mdl-37524907
Excitons (coupled electron-hole pairs) in semiconductors can form collective states that sometimes exhibit spectacular nonlinear properties. Here, we show experimental evidence of a collective state of short-lived excitons in a direct-bandgap, atomically thin MoS2 semiconductor whose propagation resembles that of a classical liquid as suggested by the nearly uniform photoluminescence through the MoS2 monolayer regardless of crystallographic defects and geometric constraints. The exciton fluid flows over ultralong distances (at least 60 µm) at a speed of ~1.8 × 107 m s-1 (~6% the speed of light). The collective phase emerges above a critical laser power, in the absence of free charges and below a critical temperature (usually Tc ≈ 150 K) approaching room temperature in hexagonal-boron-nitride-encapsulated devices. Our theoretical simulations suggest that momentum is conserved and local equilibrium is achieved among excitons; both these features are compatible with a fluid dynamics description of the exciton transport.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Nat Nanotechnol
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
Singapura
País de publicação:
Reino Unido