Your browser doesn't support javascript.
loading
Motor-driven advection competes with crowding to drive spatiotemporally heterogeneous transport in cytoskeleton composites.
Sheung, Janet Y; Garamella, Jonathan; Kahl, Stella K; Lee, Brian Y; McGorty, Ryan J; Robertson-Anderson, Rae M.
Afiliação
  • Sheung JY; W. M. Keck Science Department, Scripps College, Claremont, CA, United States.
  • Garamella J; W. M. Keck Science Department, Pitzer College, Claremont, CA, United States.
  • Kahl SK; Physics and Biophysics Department, University of San Diego, San Diego, CA, United States.
  • Lee BY; W. M. Keck Science Department, Scripps College, Claremont, CA, United States.
  • McGorty RJ; W. M. Keck Science Department, Pitzer College, Claremont, CA, United States.
  • Robertson-Anderson RM; Physics and Biophysics Department, University of San Diego, San Diego, CA, United States.
Front Phys ; 102022.
Article em En | MEDLINE | ID: mdl-37547053
ABSTRACT
The cytoskeleton-a composite network of biopolymers, molecular motors, and associated binding proteins-is a paradigmatic example of active matter. Particle transport through the cytoskeleton can range from anomalous and heterogeneous subdiffusion to superdiffusion and advection. Yet, recapitulating and understanding these properties-ubiquitous to the cytoskeleton and other out-of-equilibrium soft matter systems-remains challenging. Here, we combine light sheet microscopy with differential dynamic microscopy and single-particle tracking to elucidate anomalous and advective transport in actomyosin-microtubule composites. We show that particles exhibit multi-mode transport that transitions from pronounced subdiffusion to superdiffusion at tunable crossover timescales. Surprisingly, while higher actomyosin content increases the range of timescales over which transport is superdiffusive, it also markedly increases the degree of subdiffusion at short timescales and generally slows transport. Corresponding displacement distributions display unique combinations of non-Gaussianity, asymmetry, and non-zero modes, indicative of directed advection coupled with caged diffusion and hopping. At larger spatiotemporal scales, particles in active composites exhibit superdiffusive dynamics with scaling exponents that are robust to changing actomyosin fractions, in contrast to normal, yet faster, diffusion in networks without actomyosin. Our specific results shed important new light on the interplay between non-equilibrium processes, crowding and heterogeneity in active cytoskeletal systems. More generally, our approach is broadly applicable to active matter systems to elucidate transport and dynamics across scales.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Phys Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Phys Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos
...