Rehabilitation exoskeleton torque control based on PSO-RBFNN optimization.
PLoS One
; 18(8): e0285453, 2023.
Article
em En
| MEDLINE
| ID: mdl-37552687
Exoskeletons are widely used in the field of medical rehabilitation, however imprecise exoskeleton control may lead to accidents during patient rehabilitation, so improving the control performance of exoskeletons has become crucial. Nevertheless, improving the control performance of exoskeletons is extremely difficult, the nonlinear nature of the exoskeleton model makes control particularly difficult, and external interference when the patient wears an exoskeleton can also affect the control effect. In order to solve the above problems, a method based on particle swarm optimization (PSO) and RBF neural network to optimize exoskeleton torque control is proposed to study the motion trajectory of nonlinear exoskeleton joints in this paper, and it is found that exoskeleton torque control optimized by PSO-RBFNN has faster control speed, better stability, more accurate control results and stronger anti-interference, and the optimized exoskeleton can effectively solve the problem of difficult control of nonlinear exoskeleton and the interference problem when the patient wears the exoskeleton.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Exoesqueleto Energizado
Limite:
Humans
Idioma:
En
Revista:
PLoS One
Assunto da revista:
CIENCIA
/
MEDICINA
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
China
País de publicação:
Estados Unidos