Your browser doesn't support javascript.
loading
On-Line Dual-Active Valves Based Centrifugal Microfluidic Chip for Fully Automated Point-of-Care Immunoassay.
Qian, Chungen; Wan, Chao; Li, Shunji; Xiao, Yujin; Yuan, Huijuan; Gao, Siyu; Wu, Liqiang; Zhou, Mengfan; Feng, Xiaojun; Li, Yiwei; Chen, Peng; Liu, Bi-Feng.
Afiliação
  • Qian C; The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Techn
  • Wan C; The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Techn
  • Li S; The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Techn
  • Xiao Y; The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Techn
  • Yuan H; The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Techn
  • Gao S; The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Techn
  • Wu L; The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Techn
  • Zhou M; The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Techn
  • Feng X; The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Techn
  • Li Y; The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Techn
  • Chen P; The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Techn
  • Liu BF; The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Techn
Anal Chem ; 95(33): 12521-12531, 2023 08 22.
Article em En | MEDLINE | ID: mdl-37556853
There remains an unmet need for a fully integrated microfluidic platform that can automatically perform multistep and multireagent immunoassays. Here, we proposed a novel online dual-active valve-based centrifugal microfluidic chip, termed DAVM, for fully automatic point-of-care immunoassay. Practically, the puncture valve, one of the dual active valves, is capable of achieving precise, on-demand, sequential release of prestored reagents, while the other valve-reversible active valve enables controlled retention and drainage of the reaction solutions. Thereby, our technology mitigates the challenges of hydrophilic/hydrophobic modifications and unstable valve control performance commonly observed in passive valve controls. As a proof of concept, the indirect enzymatic immunoblotting technique was employed on DAVM for fully automated immunological analysis of eight targets, yielding outcomes within an hour. Furthermore, we conducted a comparative analysis of 28 clinical samples with autoimmune diseases. According to 224 clinical data, the sample testing concordance rate between DAVM and the traditional instrument was 82%, with a target compliance rate of 97%. Therefore, our DAVM system has powerful potential for fully automated immunoassays.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Microfluídica / Técnicas Analíticas Microfluídicas Idioma: En Revista: Anal Chem Ano de publicação: 2023 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Microfluídica / Técnicas Analíticas Microfluídicas Idioma: En Revista: Anal Chem Ano de publicação: 2023 Tipo de documento: Article País de publicação: Estados Unidos