Your browser doesn't support javascript.
loading
Prioritizing COVID-19 vaccine allocation in resource poor settings: Towards an Artificial Intelligence-enabled and Geospatial-assisted decision support framework.
Shayegh, Soheil; Andreu-Perez, Javier; Akoth, Caroline; Bosch-Capblanch, Xavier; Dasgupta, Shouro; Falchetta, Giacomo; Gregson, Simon; Hammad, Ahmed T; Herringer, Mark; Kapkea, Festus; Labella, Alvaro; Lisciotto, Luca; Martínez, Luis; Macharia, Peter M; Morales-Ruiz, Paulina; Murage, Njeri; Offeddu, Vittoria; South, Andy; Torbica, Aleksandra; Trentini, Filippo; Melegaro, Alessia.
Afiliação
  • Shayegh S; RFF-CMCC European Institute on Economics and the Environment, Centro Euro-Mediterraneo sui Cambiamenti Climatici, Milan, Italy.
  • Andreu-Perez J; Centre for Computational Intelligence, School of Computer Science and Electronic Engineering, University of Essex, Colchester, United Kingdom.
  • Akoth C; Group Simbad, Department of Computer Science, University of Jaén, Jaén, Spain.
  • Bosch-Capblanch X; Women in GIS Kenya Ltd, Nairobi, Kenya.
  • Dasgupta S; Swiss Tropical and Public Health Institute, Allschwil, Switzerland.
  • Falchetta G; University of Basel, Basel, Switzerland.
  • Gregson S; Fondazione CMCC, Lecce, Italy.
  • Hammad AT; Ca' Foscari University of Venice, Venice, Italy.
  • Herringer M; RFF-CMCC European Institute on Economics and the Environment, Centro Euro-Mediterraneo sui Cambiamenti Climatici, Milan, Italy.
  • Kapkea F; International Institute for Applied Systems Analysis, Vienna, Austria.
  • Labella A; Imperial College School of Public Health, Imperial College London, London, United Kingdom.
  • Lisciotto L; Biomedical Research and Training Institute, Harare, Zimbabwe.
  • Martínez L; Università Cattolica del Sacro Cuore, Milan, Italy.
  • Macharia PM; Decatab Pte. Ltd., Singapore, Singapore.
  • Morales-Ruiz P; The Global Healthsites Mapping Project-Healthsites.io, Hoorn, Netherlands.
  • Murage N; Mapping the Risk of International Infectious Disease Spread-mriids.org, Brookline, Massachusetts, United States of America.
  • Offeddu V; Women in GIS Kenya Ltd, Nairobi, Kenya.
  • South A; Department of Computer Science, University of Jaén, Jaén, Spain.
  • Torbica A; Ca' Foscari University of Venice, Venice, Italy.
  • Trentini F; DNV-Energy Systems, Bologna, Italy.
  • Melegaro A; Department of Computer Science, University of Jaén, Jaén, Spain.
PLoS One ; 18(8): e0275037, 2023.
Article em En | MEDLINE | ID: mdl-37561732
OBJECTIVES: To propose a novel framework for COVID-19 vaccine allocation based on three components of Vulnerability, Vaccination, and Values (3Vs). METHODS: A combination of geospatial data analysis and artificial intelligence methods for evaluating vulnerability factors at the local level and allocate vaccines according to a dynamic mechanism for updating vulnerability and vaccine uptake. RESULTS: A novel approach is introduced including (I) Vulnerability data collection (including country-specific data on demographic, socioeconomic, epidemiological, healthcare, and environmental factors), (II) Vaccination prioritization through estimation of a unique Vulnerability Index composed of a range of factors selected and weighed through an Artificial Intelligence (AI-enabled) expert elicitation survey and scientific literature screening, and (III) Values consideration by identification of the most effective GIS-assisted allocation of vaccines at the local level, considering context-specific constraints and objectives. CONCLUSIONS: We showcase the performance of the 3Vs strategy by comparing it to the actual vaccination rollout in Kenya. We show that under the current strategy, socially vulnerable individuals comprise only 45% of all vaccinated people in Kenya while if the 3Vs strategy was implemented, this group would be the first to receive vaccines.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Vacinas contra COVID-19 / COVID-19 Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Itália País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Vacinas contra COVID-19 / COVID-19 Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Itália País de publicação: Estados Unidos