Your browser doesn't support javascript.
loading
Global water use efficiency saturation due to increased vapor pressure deficit.
Li, Fei; Xiao, Jingfeng; Chen, Jiquan; Ballantyne, Ashley; Jin, Ke; Li, Bing; Abraha, Michael; John, Ranjeet.
Afiliação
  • Li F; Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot 010010, China.
  • Xiao J; Center for Global Change and Earth Observations, Michigan State University, East Lansing, MI 48823, USA.
  • Chen J; Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824, USA.
  • Ballantyne A; Center for Global Change and Earth Observations, Michigan State University, East Lansing, MI 48823, USA.
  • Jin K; Department of Ecosystem and Conservation Science, University of Montana, Missoula, MT 59801, USA.
  • Li B; Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, 91190 Gif-sur-Yvette, France.
  • Abraha M; Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot 010010, China.
  • John R; Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot 010010, China.
Science ; 381(6658): 672-677, 2023 08 11.
Article em En | MEDLINE | ID: mdl-37561856
The ratio of carbon assimilation to water evapotranspiration (ET) of an ecosystem, referred to as ecosystem water use efficiency (WUEeco), is widely expected to increase because of the rising atmospheric carbon dioxide concentration (Ca). However, little is known about the interactive effects of rising Ca and climate change on WUEeco. On the basis of upscaled estimates from machine learning methods and global FLUXNET observations, we show that global WUEeco has not risen since 2001 because of the asymmetric effects of an increased vapor pressure deficit (VPD), which depressed photosynthesis and enhanced ET. An undiminished ET trend indicates that rising temperature and VPD may play a more important role in regulating ET than declining stomatal conductance. Projected increases in VPD are predicted to affect the future coupling of the terrestrial carbon and water cycles.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fotossíntese / Mudança Climática / Dióxido de Carbono / Ecossistema / Pressão de Vapor / Ciclo Hidrológico Idioma: En Revista: Science Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fotossíntese / Mudança Climática / Dióxido de Carbono / Ecossistema / Pressão de Vapor / Ciclo Hidrológico Idioma: En Revista: Science Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China País de publicação: Estados Unidos