Quantitative Investigation of Methylation Heterogeneity by Digital Melting Curve Analysis on a SlipChip for Atrial Fibrillation.
ACS Sens
; 8(9): 3595-3603, 2023 09 22.
Article
em En
| MEDLINE
| ID: mdl-37590470
Methylation is an essential epigenetic modification involved in regulating gene expression and maintaining genome stability. Methylation patterns can be heterogeneous, exhibiting variations in both level and density. However, current methods of methylation analysis, including sequencing, methylation-specific PCR, and high-resolution melting curve analysis (HRM), face limitations of high cost, time-consuming workflows, and the difficulty of both accurate heterogeneity analysis and precise quantification. Here, a droplet array SlipChip-based (da-SlipChip-based) digital melting curve analysis (MCA) method was developed for the accurate quantification of both methylation level (ratio of methylated molecules to total molecules) and methylation density (ratio of methylated CpG sites to total CpG sites). The SlipChip-based digital MCA system supplements an in situ thermal cycler with a fluorescence imaging module for real-time MCA. The da-SlipChip can generate 10,656 droplets of 1 nL each, which can be separated into four lanes, enabling the simultaneous analysis of four samples. This method's clinical application was demonstrated by analyzing samples from ten healthy individuals and twenty patients with atrial fibrillation (AF), the most common arrhythmia. This method can distinguish healthy individuals from those with AF of both the paroxysmal and persistent types. It also holds potential for broader application in various research and clinical settings requiring methylation analysis.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Fibrilação Atrial
Tipo de estudo:
Diagnostic_studies
Limite:
Humans
Idioma:
En
Revista:
ACS Sens
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
China
País de publicação:
Estados Unidos