Carboxymethylcellulose/poly(3,4-ethylenedioxythiophene):polystyrene sulfonate membrane after dimethyl sulfoxide treatment for flexible and high electrochemical performance asymmetric supercapacitors.
Int J Biol Macromol
; 251: 126430, 2023 Aug 19.
Article
em En
| MEDLINE
| ID: mdl-37604419
As the requirements for wearable electronic devices continue to increase, the development of bendable and foldable supercapacitors is becoming critical. However, it is still challenging to design free-standing electrodes with flexibility and high electrical conductivity. Herein, using carboxymethylcellulose (CMC) as the biological template and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) as the electroactive material, a flexible CMC/PEDOT:PSS membrane with a cross-linked mesh structure was firstly synthesized by a facile in-situ polymerization and vacuum filtration process. Subsequently, the CMC/PEDOT:PSS membrane was further treated with dimethyl sulfoxide (DMSO) to remove the excess PSS, thereby enhancing their electrochemical performance. The results showed that the best performing hybrid membrane had good mechanical properties (tensile strength of 48.1 MPa) and high electrical conductivity (45.1 S cm-1). The assembled asymmetric supercapacitor (ASC) is capable of delivering an energy density of 181.9 µW h cm-2 at a power density of 750 µW cm-2 and maintains an initial capacitance of 93.4 % and a coulombic efficiency of 100 % after 10,000 GCD cycles, demonstrating an ultra-long cycle life. Moreover, good electrochemical properties can be retained even in the bent and folded state. Therefore, the hybrid membrane electrode with both flexibility and high electrochemical performance has great potential for application in wearable electronics.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Int J Biol Macromol
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
China
País de publicação:
Holanda