Your browser doesn't support javascript.
loading
Simultaneous immobilization enhances synergistic interactions and crude oil removal of bacterial consortium.
Rungsihiranrut, Adisan; Muangchinda, Chanokporn; Naloka, Kallayanee; Dechsakulwatana, Chutiwan; Pinyakong, Onruthai.
Afiliação
  • Rungsihiranrut A; International Postgraduate Programs in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Microbial Technology for Marine Pollution Treatment (MiTMaPT), Department of Microbiology, Faculty of Science, Chulalo
  • Muangchinda C; International Postgraduate Programs in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Microbial Technology for Marine Pollution Treatment (MiTMaPT), Department of Microbiology, Faculty of Science, Chulalo
  • Naloka K; Center of Excellence in Microbial Technology for Marine Pollution Treatment (MiTMaPT), Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Research Program on Remediation Technologies for Petroleum Contamination, Center of Excellence on Hazardous Subst
  • Dechsakulwatana C; Institute of Marine Science, Burapha University, Chonburi, 20131, Thailand.
  • Pinyakong O; Center of Excellence in Microbial Technology for Marine Pollution Treatment (MiTMaPT), Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Research Program on Remediation Technologies for Petroleum Contamination, Center of Excellence on Hazardous Subst
Chemosphere ; 340: 139934, 2023 Nov.
Article em En | MEDLINE | ID: mdl-37619752
ABSTRACT
Oil spillage has serious adverse effects on marine environments. The degradation of crude oil by microorganisms may be an effective and sustainable approach. In this study, the removal of crude oil from seawater by immobilized bacterial consortium was performed and the enhancement of crude oil degradation efficiency by varying immobilization methods and inoculum volume ratio was examined. The nonpathogenic and heavy metal-tolerant bacterial consortium of Sphingobium naphthae MO2-4 and Priestia aryabhattai TL01-2 was immobilized by biofilm formation on aquaporousgels. The simultaneous immobilization of strains MO2-4 and TL01-2 showed better crude oil removal efficiency than independent immobilization, which indicated positive interactions among consortium members in the mixed-culture immobilized systems. Moreover, the immobilized consortium at a 21 (MO2-4TL01-2) inoculum volume ratio showed the best crude oil removal capacity. The immobilized consortium removed 77% of 2000 mg L-1 crude oil in seawater over 7 days. The immobilized consortium maintained crude oil removal efficacy in semicontinuous experiments. In addition, the immobilized consortium was used to remediate seawater contaminated with 1000 mg L-1 crude oil in a 20 L wave tank. After 28 days, the crude oil degradation efficiency of immobilized consortium was approximately 70%, and crude oil degradation through natural attenuation was not observed. Moreover, the genomic features of strains MO2-4 and TL01-2 are reported. Genomic analyses of both strains confirmed the presence of many genes involved in hydrocarbon degradation, heavy metal resistance, biosurfactant synthesis, and biofilm formation, supporting the biodegradation results and characterizing strain properties. The results of this work introduce the potential benefit of simultaneous immobilization of bacterial consortia to improve efficiency of crude oil biodegradation and has motivated further investigations into large-scale remediation of crude oil-contaminated seawater.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Petróleo / Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos Limite: Humans Idioma: En Revista: Chemosphere Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Petróleo / Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos Limite: Humans Idioma: En Revista: Chemosphere Ano de publicação: 2023 Tipo de documento: Article