A Comparison of Cell-Cell Interaction Prediction Tools Based on scRNA-seq Data.
Biomolecules
; 13(8)2023 08 02.
Article
em En
| MEDLINE
| ID: mdl-37627276
Computational prediction of cell-cell interactions (CCIs) is becoming increasingly important for understanding disease development and progression. We present a benchmark study of available CCI prediction tools based on single-cell RNA sequencing (scRNA-seq) data. By comparing prediction outputs with a manually curated gold standard for idiopathic pulmonary fibrosis (IPF), we evaluated prediction performance and processing time of several CCI prediction tools, including CCInx, CellChat, CellPhoneDB, iTALK, NATMI, scMLnet, SingleCellSignalR, and an ensemble of tools. According to our results, CellPhoneDB and NATMI are the best performer CCI prediction tools, among the ones analyzed, when we define a CCI as a source-target-ligand-receptor tetrad. In addition, we recommend specific tools according to different types of research projects and discuss the possible future paths in the field.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Fibrose Pulmonar Idiopática
/
Análise da Expressão Gênica de Célula Única
Tipo de estudo:
Prognostic_studies
/
Risk_factors_studies
Limite:
Humans
Idioma:
En
Revista:
Biomolecules
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
China
País de publicação:
Suíça