Your browser doesn't support javascript.
loading
Sequence composition and location of CRE motifs affect the binding ability of CcpA protein.
Li, Dengke; Guo, Jiejie; Zhang, Zhiqiang; Liu, Yihan; Lu, Fuping; Li, Qinggang; Liu, Yexue; Li, Yu.
Afiliação
  • Li D; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, PR Ch
  • Guo J; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, PR Ch
  • Zhang Z; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, PR Ch
  • Liu Y; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, PR Ch
  • Lu F; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, PR Ch
  • Li Q; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, PR Ch
  • Liu Y; Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, PR China. Electronic address: liuyexue@tust.edu.cn.
  • Li Y; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, PR Ch
Int J Biol Macromol ; 253(Pt 1): 126407, 2023 Dec 31.
Article em En | MEDLINE | ID: mdl-37634771
Bacillus catabolite control protein (CcpA) mediates carbon catabolite repression (CCR) by binding with catabolite response elements (CREs) of genes or operons. Although numerous CREs had been predicted and identified, the influence of the changes in sequence and structure of CREs on recognition and binding for CcpA has yet to be unclear. This study aimed at revealing how CcpA could bind such diverse sites and focused on the analysis of multiple mutants of the CRE motif derived from the α-amylase promoter. Molecular docking and free energy calculation insights into the binding ability between the CRE sequences composition and CcpA protein. Disruption of conserved nucleotides in the CRE motifs, as well as altering the symmetric structure of the CRE sequences and the relative position of the displaced CRE motifs near the transcription start site contribute to some extent to weakening the strength of CcpA - dependent regulation. These main factors contribute to the understanding of the subtle changes in CRE motifs leading to differential regulatory effects of CcpA. Finally, an engineered promoter with a high level of transcription was obtained, and elevated extracellular enzyme activity was achieved in the expression system of Bacillus amyloliquefaciens, including alkaline protease, keratinase, aminopeptidase and acid-stable alpha amylase. The study also provides a reference for the application of other promoters with CRE motifts.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Repressoras / Proteínas de Ligação a DNA Tipo de estudo: Prognostic_studies Idioma: En Revista: Int J Biol Macromol Ano de publicação: 2023 Tipo de documento: Article País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Repressoras / Proteínas de Ligação a DNA Tipo de estudo: Prognostic_studies Idioma: En Revista: Int J Biol Macromol Ano de publicação: 2023 Tipo de documento: Article País de publicação: Holanda