Your browser doesn't support javascript.
loading
Thermally Stable Ceramic-Salt Electrolytes for Li Metal Batteries Produced from Cold Sintering Using DMF/Water Mixture Solvents.
Kim, Sunwoo; Gim, Yejin; Lee, Wonho.
Afiliação
  • Kim S; Department of Polymer Science and Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea.
  • Gim Y; Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea.
  • Lee W; Department of Polymer Science and Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea.
Nanomaterials (Basel) ; 13(17)2023 Aug 28.
Article em En | MEDLINE | ID: mdl-37686944
The cold sintering process (CSP) for synthesizing oxide-based electrolytes, which uses water transient solvents and uniaxial pressure, is a promising alternative to the conventional high temperature sintering process due to its low temperature (<200 °C) and short processing time (<2 h). However, the formation of amorphous secondary phases in the intergranular regions, which results in poor ionic conductivity (σ), remains a challenge. In this study, we introduced high-boiling solvents of dimethylformamide (DMF, b.p.: 153 °C) and dimethyl sulfoxide (DMSO, b.p.: 189 °C) as transient solvents to develop composite electrolytes of Li1.5Al0.5Ge1.5(PO4)3 (LAGP) with bis(trifluoromethane)sulfonimide lithium salt (LiTFSI). Our results show that composite electrolytes processed with the DMF/water mixture (CSP LAGP-LiTFSI DMF/H2O) yield a high σ of 10-4 S cm-1 at room temperature and high relative densities of >87%. Furthermore, the composite electrolytes exhibit good thermal stability; the σ maintains its initial value after heat treatment. In contrast, the composite electrolytes processed with the DMSO/water mixture and water alone show thermal degradation. The CSP LAGP-LiTFSI DMF/H2O composite electrolytes exhibit long-term stability, showing no signs of short circuiting after 350 h at 0.1 mAh cm-2 in Li symmetric cells. Our work highlights the importance of selecting appropriate transient solvents for producing efficient and stable composite electrolytes using CSP.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanomaterials (Basel) Ano de publicação: 2023 Tipo de documento: Article País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanomaterials (Basel) Ano de publicação: 2023 Tipo de documento: Article País de publicação: Suíça