Your browser doesn't support javascript.
loading
Uncovering new families and folds in the natural protein universe.
Durairaj, Janani; Waterhouse, Andrew M; Mets, Toomas; Brodiazhenko, Tetiana; Abdullah, Minhal; Studer, Gabriel; Tauriello, Gerardo; Akdel, Mehmet; Andreeva, Antonina; Bateman, Alex; Tenson, Tanel; Hauryliuk, Vasili; Schwede, Torsten; Pereira, Joana.
Afiliação
  • Durairaj J; Biozentrum, University of Basel, Basel, Switzerland.
  • Waterhouse AM; SIB Swiss Institute of Bioinformatics, University of Basel, Basel, Switzerland.
  • Mets T; Biozentrum, University of Basel, Basel, Switzerland.
  • Brodiazhenko T; SIB Swiss Institute of Bioinformatics, University of Basel, Basel, Switzerland.
  • Abdullah M; Institute of Technology, University of Tartu, Tartu, Estonia.
  • Studer G; Department of Experimental Medical Science, Lund University, Lund, Sweden.
  • Tauriello G; Institute of Technology, University of Tartu, Tartu, Estonia.
  • Akdel M; Institute of Technology, University of Tartu, Tartu, Estonia.
  • Andreeva A; Department of Experimental Medical Science, Lund University, Lund, Sweden.
  • Bateman A; Biozentrum, University of Basel, Basel, Switzerland.
  • Tenson T; SIB Swiss Institute of Bioinformatics, University of Basel, Basel, Switzerland.
  • Hauryliuk V; Biozentrum, University of Basel, Basel, Switzerland.
  • Schwede T; SIB Swiss Institute of Bioinformatics, University of Basel, Basel, Switzerland.
  • Pereira J; VantAI, New York, NY, USA.
Nature ; 622(7983): 646-653, 2023 Oct.
Article em En | MEDLINE | ID: mdl-37704037
We are now entering a new era in protein sequence and structure annotation, with hundreds of millions of predicted protein structures made available through the AlphaFold database1. These models cover nearly all proteins that are known, including those challenging to annotate for function or putative biological role using standard homology-based approaches. In this study, we examine the extent to which the AlphaFold database has structurally illuminated this 'dark matter' of the natural protein universe at high predicted accuracy. We further describe the protein diversity that these models cover as an annotated interactive sequence similarity network, accessible at https://uniprot3d.org/atlas/AFDB90v4 . By searching for novelties from sequence, structure and semantic perspectives, we uncovered the ß-flower fold, added several protein families to Pfam database2 and experimentally demonstrated that one of these belongs to a new superfamily of translation-targeting toxin-antitoxin systems, TumE-TumA. This work underscores the value of large-scale efforts in identifying, annotating and prioritizing new protein families. By leveraging the recent deep learning revolution in protein bioinformatics, we can now shed light into uncharted areas of the protein universe at an unprecedented scale, paving the way to innovations in life sciences and biotechnology.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas / Dobramento de Proteína / Bases de Dados de Proteínas / Homologia Estrutural de Proteína / Anotação de Sequência Molecular / Aprendizado Profundo Tipo de estudo: Prognostic_studies Idioma: En Revista: Nature Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Suíça País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas / Dobramento de Proteína / Bases de Dados de Proteínas / Homologia Estrutural de Proteína / Anotação de Sequência Molecular / Aprendizado Profundo Tipo de estudo: Prognostic_studies Idioma: En Revista: Nature Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Suíça País de publicação: Reino Unido