Your browser doesn't support javascript.
loading
A meta-analysis of methane mitigation potential of feed additives evaluated in vitro.
Martins, L F; Cueva, S F; Lage, C F A; Ramin, M; Silvestre, T; Tricarico, J; Hristov, A N.
Afiliação
  • Martins LF; Department of Animal Science, The Pennsylvania State University, University Park, PA 16802.
  • Cueva SF; Department of Animal Science, The Pennsylvania State University, University Park, PA 16802.
  • Lage CFA; Department of Animal Science, The Pennsylvania State University, University Park, PA 16802; Cornell Cooperative Extension, Bath, NY, USA 14810.
  • Ramin M; Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Umeå, Sweden SE-901 83.
  • Silvestre T; Department of Animal Science, The Pennsylvania State University, University Park, PA 16802; Kemin Industries, Singapore, 758200.
  • Tricarico J; Innovation Center for U.S. Dairy, Rosemont, IL, USA 60018.
  • Hristov AN; Department of Animal Science, The Pennsylvania State University, University Park, PA 16802. Electronic address: anh13@psu.edu.
J Dairy Sci ; 2023 Sep 12.
Article em En | MEDLINE | ID: mdl-37709018
ABSTRACT
A systematic literature review of in vitro studies was performed to identify methane (CH4) mitigation interventions with a potential to reduce CH4 emission in vivo. Data from 277 peer-reviewed studies published between 1979 and 2018 were reviewed. Individual CH4 mitigation interventions were classified into 14 categories of feed additives based on their type, chemical composition, and mode of action. Response variables evaluated were absolute CH4 emission (number of treatment means comparisons = 1,325); total volatile fatty acids (VFA; n = 1,007), acetate (n = 783), propionate (n = 792), and butyrate (n = 776) concentrations; acetate to propionate ratio (AP; n = 675); digestibility of dry matter (DM; n = 489), organic matter (OM; n = 277), and neutral detergent fiber (NDF; n = 177). Total gas production was used as an explanatory variable in the model for CH4 production. Relative mean difference between treatment and control means reported in the studies were calculated and used for statistical analysis. Robust variance estimation method was used to analyze the effects of CH4 mitigation interventions. In vitro CH4 production was decreased by antibodies (-38.9%), chemical inhibitors (-29.2%), electron sinks (-18.9%), essential oils (-18.2%), plant extracts (-14.5%), plants inclusion (-11.7%), saponins (-14.8%), and tannins (-14.5%). Overall effects of direct fed microbials, enzymes, macroalgae, and organic acids supplementation did not affect CH4 production in the current meta-analysis. When considering the effects of individual mitigation interventions containing a minimum number of 4 degrees of freedom within feed additives categories, Enterococcus spp. (i.e., direct fed microbial), nitrophenol (i.e., electron sink), and Leucaena spp. (i.e., tannins) decreased CH4 production by 20.3, 27.1, and 23.5%, respectively, without extensively, or only slightly, affecting ruminal fermentation and digestibility of nutrients. It should be noted, however, that although the total number of publications (n = 277) and treatment means comparisons (n = 1,325 for CH4 production) in the current analysis were high, data for most mitigation interventions were obtained from less than 5 observations (e.g., maximum number of observations was 4, 7, and 22 for nitrophenol, Enterococcus spp., and Leucaena spp., respectively), because of limited data available in the literature. These should be further evaluated in vitro and in vivo to determine their true potential to decrease enteric CH4 production, yield, and intensity. Some mitigation interventions (e.g., magnesium, Heracleum spp., nitroglycerin, ß-cyclodextrin, Leptospermum pattersoni, Fructulus Ligustri, Salix caprea, and Sesbania grandiflora) decreased in vitro CH4 production by over 50% but did not have enough observations in the database. These should be more extensively investigated in vitro, and the dose effect must be considered before adoption of mitigation interventions in vivo.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Systematic_reviews Idioma: En Revista: J Dairy Sci Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Systematic_reviews Idioma: En Revista: J Dairy Sci Ano de publicação: 2023 Tipo de documento: Article