Two-mode squeezing over deployed fiber coexisting with conventional communications.
Opt Express
; 31(16): 26254-26275, 2023 Jul 31.
Article
em En
| MEDLINE
| ID: mdl-37710490
Squeezed light is a crucial resource for continuous-variable (CV) quantum information science. Distributed multi-mode squeezing is critical for enabling CV quantum networks and distributed quantum sensing. To date, multi-mode squeezing measured by homodyne detection has been limited to single-room experiments without coexisting classical signals, i.e., on "dark" fiber. Here, after distribution through separate fiber spools (5 km), -0.9 ± 0.1-dB coexistent two-mode squeezing is measured. Moreover, after distribution through separate deployed campus fibers (about 250 m and 1.2 km), -0.5 ± 0.1-dB coexistent two-mode squeezing is measured. Prior to distribution, the squeezed modes are each frequency multiplexed with several classical signals-including the local oscillator and conventional network signals-demonstrating that the squeezed modes do not need dedicated dark fiber. After distribution, joint two-mode squeezing is measured and recorded for post-processing using triggered homodyne detection in separate locations. This demonstration enables future applications in quantum networks and quantum sensing that rely on distributed multi-mode squeezing.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Opt Express
Assunto da revista:
OFTALMOLOGIA
Ano de publicação:
2023
Tipo de documento:
Article
País de publicação:
Estados Unidos