Your browser doesn't support javascript.
loading
Integrating end-to-end learning with deep geometrical potentials for ab initio RNA structure prediction.
Li, Yang; Zhang, Chengxin; Feng, Chenjie; Pearce, Robin; Lydia Freddolino, P; Zhang, Yang.
Afiliação
  • Li Y; Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore.
  • Zhang C; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
  • Feng C; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
  • Pearce R; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06511, USA.
  • Lydia Freddolino P; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
  • Zhang Y; School of Science, Ningxia Medical University, Yinchuan, 750004, China.
Nat Commun ; 14(1): 5745, 2023 09 16.
Article em En | MEDLINE | ID: mdl-37717036
RNAs are fundamental in living cells and perform critical functions determined by their tertiary architectures. However, accurate modeling of 3D RNA structure remains a challenging problem. We present a novel method, DRfold, to predict RNA tertiary structures by simultaneous learning of local frame rotations and geometric restraints from experimentally solved RNA structures, where the learned knowledge is converted into a hybrid energy potential to guide RNA structure assembly. The method significantly outperforms previous approaches by >73.3% in TM-score on a sequence-nonredundant dataset containing recently released structures. Detailed analyses showed that the major contribution to the improvements arise from the deep end-to-end learning supervised with the atom coordinates and the composite energy function integrating complementary information from geometry restraints and end-to-end learning models. The open-source DRfold program with fast training protocol allows large-scale application of high-resolution RNA structure modeling and can be further improved with future expansion of RNA structure databases.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bases de Dados de Ácidos Nucleicos / Aprendizagem Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Singapura País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bases de Dados de Ácidos Nucleicos / Aprendizagem Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Singapura País de publicação: Reino Unido