Your browser doesn't support javascript.
loading
Effects of Intra-Base Pair Proton Transfer on Dissociation and Singlet Oxygenation of 9-Methyl-8-Oxoguanine-1-Methyl-Cytosine Base-Pair Radical Cations.
Moe, May Myat; Tsai, Midas; Liu, Jianbo.
Afiliação
  • Moe MM; Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, NY 11367, USA.
  • Tsai M; Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave., New York, NY 10016, USA.
  • Liu J; Department of Natural Sciences, LaGuardia Community College, 31-10 Thomson Ave., Long Island City, NY 11101, USA.
Chemphyschem ; 24(23): e202300511, 2023 Dec 01.
Article em En | MEDLINE | ID: mdl-37738022
8-Oxoguanosine is the most common oxidatively generated base damage and pairs with complementary cytidine within duplex DNA. The 8-oxoguanosine-cytidine lesion, if not recognized and removed, not only leads to G-to-T transversion mutations but renders the base pair being more vulnerable to the ionizing radiation and singlet oxygen (1 O2 ) damage. Herein, reaction dynamics of a prototype Watson-Crick base pair [9MOG ⋅ 1MC]⋅+ , consisting of 9-methyl-8-oxoguanine radical cation (9MOG⋅+ ) and 1-methylcystosine (1MC), was examined using mass spectrometry coupled with electrospray ionization. We first detected base-pair dissociation in collisions with the Xe gas, which provided insight into intra-base pair proton transfer of 9MOG⋅+ ⋅ 1MC ← → ${{\stackrel{ {\rightarrow} } { {\leftarrow} } } }$ [9MOG - HN1 ]⋅ ⋅ [1MC+HN3' ]+ and subsequent non-statistical base-pair separation. We then measured the reaction of [9MOG ⋅ 1MC]⋅+ with 1 O2 , revealing the two most probable pathways, C5-O2 addition and HN7 -abstraction at 9MOG. Reactions were entangled with the two forms of 9MOG radicals and base-pair structures as well as multi-configurations between open-shell radicals and 1 O2 (that has a mixed singlet/triplet character). These were disentangled by utilizing approximately spin-projected density functional theory, coupled-cluster theory and multi-referential electronic structure modeling. The work delineated base-pair structural context effects and determined relative reactivity toward 1 O2 as [9MOG - H]⋅>9MOG⋅+ >[9MOG - HN1 ]⋅ ⋅ [1MC+HN3' ]+ ≥9MOG⋅+ ⋅ 1MC.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Prótons / Citosina Idioma: En Revista: Chemphyschem Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Prótons / Citosina Idioma: En Revista: Chemphyschem Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Alemanha