Your browser doesn't support javascript.
loading
Dynamic and harmonious allocation of irrigation water resources under climate change: A SWAT-based multi-objective nonlinear framework.
Cao, Kaihua; Liu, Xiao; Fu, Qiang; Wang, Yijia; Liu, Dong; Li, Tianxiao; Li, Mo.
Afiliação
  • Cao K; School of Water Conservancy & Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
  • Liu X; China Institute of Water Resources and Hydropower Research, No. 1 Fuxing Road, Haidian District, Beijing 100038, China; Research Center on Flood & Drought Disaster Reduction of the Ministry of Water Resources, No. 1 Fuxing Road, Haidian District, Beijing 100038, China.
  • Fu Q; School of Water Conservancy & Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
  • Wang Y; Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, 999077, Hong Kong, China.
  • Liu D; School of Water Conservancy & Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
  • Li T; School of Water Conservancy & Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
  • Li M; School of Water Conservancy & Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Natio
Sci Total Environ ; 905: 167221, 2023 Dec 20.
Article em En | MEDLINE | ID: mdl-37741408
Efficient allocation of water resources in irrigation districts can alleviate regional water shortages and promote sustainable irrigated agriculture development. However, existing research on water resource allocation in irrigation districts does not address the lack of coordination within the "diversion-delivery-irrigation" chain for multiple water sources and users in a changing environment. Hence, poor water supply and demand matching, low efficiency and poor climate change responses pose challenges for efficient water resource allocation in irrigation districts. Therefore, this study couples the SWAT runoff simulation model with a multiobjective nonlinear programming model and proposes a weather-driven dynamic and optimal allocation model for multiple water sources. This model accounts for fluctuations in water supply and fine-tunes the allocation of water resources to different water sources, different channels and different crop fertility periods in the irrigation area. The model is designed to achieve synergistic improvements in water supply and demand, economic efficiency, equity in water distribution and efficiency in water use. The model was applied to the Qindeli Irrigation District in Heilongjiang Province. The results show that an increase in water supply at the head of the channel promotes a synergistic increase in economic efficiency and water supply and demand matching. This model can improve water use efficiency under water scarcity by reasonably optimizing the water use structure of the irrigation district. Compared with the traditional irrigation method, the optimized model saves 4 % of water and increases yield by 399 kg/ha, economic efficiency by 0.2 yuan per cubic meter of water, water use efficiency by 9 %, and water supply and demand matching by >80 % at all stages of fertility. The model ensures that water resources are allocated in an equitable manner at all levels.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Total Environ Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Total Environ Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China País de publicação: Holanda