Synthesis of Inexpensive Ternary Metal Oxides by a Co-Precipitation Method for Catalytic Oxidation of Carbon Monoxide.
Chem Asian J
; 18(22): e202300683, 2023 Nov 16.
Article
em En
| MEDLINE
| ID: mdl-37747137
By using a simple co-precipitation method, new Fe2 O3 -based nanocatalysts (samples) were synthesized. The samples were composites of two or three transition metal oxides, MOx (M=Fe, Mn, Co, Ni, and Cu). The average size of CuO crystallites in the composites composed of two oxide components (CuO-Fe2 O3 ) was about 14.3â
nm, while in those composed of three (CuO-MnOx -Fe2 O3 ), the composite's phase compositions were almost in the amorphous form when annealing the sample at 300 °C. The latter sample had a specific surface area higher than that of the former, 207.9 and 142.1â
g/m2 , respectively, explaining its higher catalytic CO oxidation. The CO conversion over the CuO-MnOx -Fe2 O3 -300 catalyst (1â
g of catalyst, 2600â
ppm of CO concentration in air, and 1.0â
L/min of gas flow rate) begins at about 40 °C; the temperature for 50 % CO conversion (t50 ) is near 82 °C; and CO removal is almost complete at t99 ≈110 °C. The activity of the optimal sample was tested in different catalytic conditions, thereby observing a high durability of 99-100 % CO conversion at 130 °C. The obtained results were derived from XRD, FTIR, BET, SEM, elemental analysis and mapping, as well as catalytic experiments.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Chem Asian J
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
Vietnã
País de publicação:
Alemanha