Your browser doesn't support javascript.
loading
CRISPR/Cas-Assisted Nanoneedle Sensor for Adenosine Triphosphate Detection in Living Cells.
Kim, Hongki; Gu, Chenlei; Mustfa, Salman Ahmad; Martella, Davide Alessandro; Wang, Cong; Wang, Yikai; Chiappini, Ciro.
Afiliação
  • Kim H; Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, U.K.
  • Gu C; Department of Chemistry, Kongju National University, Gongju 32588, Republic of Korea.
  • Mustfa SA; Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, U.K.
  • Martella DA; London Centre for Nanotechnology, King's College London, London SE1 9RT, U.K.
  • Wang C; Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, U.K.
  • Wang Y; Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, U.K.
  • Chiappini C; Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, U.K.
ACS Appl Mater Interfaces ; 15(43): 49964-49973, 2023 Nov 01.
Article em En | MEDLINE | ID: mdl-37769296
The clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (Cas) (CRISPR/Cas) systems have recently emerged as powerful molecular biosensing tools based on their collateral cleavage activity due to their simplicity, sensitivity, specificity, and broad applicability. However, the direct application of the collateral cleavage activity for in situ intracellular detection is still challenging. Here, we debut a CRISPR/Cas-assisted nanoneedle sensor (nanoCRISPR) for intracellular adenosine triphosphate (ATP), which avoids the challenges associated with intracellular collateral cleavage by introducing a two-step process of intracellular target recognition, followed by extracellular transduction and detection. ATP recognition occurs by first presenting in the cell cytosol an aptamer-locked Cas12a activator conjugated to nanoneedles; the recognition event unlocks the activator immobilized on the nanoneedles. The nanoneedles are then removed from the cells and exposed to the Cas12a/crRNA complex, where the activator triggers the cleavage of an ssDNA fluorophore-quencher pair, generating a detectable fluorescence signal. NanoCRISPR has an ATP detection limit of 246 nM and a dynamic range from 1.56 to 50 µM. Importantly, nanoCRISPR can detect intracellular ATP in 30 min in live cells without impacting cell viability. We anticipate that the nanoCRISPR approach will contribute to broadening the biomedical applications of CRISPR/Cas sensors for the detection of diverse intracellular molecules in living systems.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Sistemas CRISPR-Cas Tipo de estudo: Diagnostic_studies Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2023 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Sistemas CRISPR-Cas Tipo de estudo: Diagnostic_studies Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2023 Tipo de documento: Article País de publicação: Estados Unidos