Your browser doesn't support javascript.
loading
Toward Industrial Production of a High-Performance Self-Powered Ultraviolet Photodetector Using Nanoporous Al-Doped ZnO Thin Films.
Tran, Manh Hoang; Nguyen, Thi My Huyen; Bark, Chung Wung.
Afiliação
  • Tran MH; Department of Electrical Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, South Korea.
  • Nguyen TMH; Department of Electrical Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, South Korea.
  • Bark CW; Department of Electrical Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, South Korea.
ACS Omega ; 8(38): 35343-35350, 2023 Sep 26.
Article em En | MEDLINE | ID: mdl-37779960
ABSTRACT
Al-doped ZnO (AZO) thin films are effective n-type semiconductors for ultraviolet (UV) detection because of their low cost, high electron mobility, and high sensitivity to UV light, especially in the UVA spectrum. However, a reasonable compromise between performance (such as sensitivity, detectivity, and response time) and fabrication ease remains an obstacle to the practicability of AZO-based UV photodetectors. To address this issue, we propose an efficient strategy to achieve a large AZO photoactive area for outstanding performance, along with a facile sol-gel method. Consequently, the device exhibits a superb on/off ratio of >104, a high detectivity of 1.85 × 1012 Jones, and a fast response speed under 365 nm UVA illumination without external energy consumption. Hence, this study suggests a self-powered and high-performance nanoporous AZO-based UVA detector with an environmentally friendly scalable process that satisfies industrial production requirements for numerous practical UV-detection applications.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Omega Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Coréia do Sul

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Omega Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Coréia do Sul