Your browser doesn't support javascript.
loading
In-situ electro-responsive through-space coupling enabling foldamers as volatile memory elements.
Li, Jinshi; Shen, Pingchuan; Zhuang, Zeyan; Wu, Junqi; Tang, Ben Zhong; Zhao, Zujin.
Afiliação
  • Li J; State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.
  • Shen P; State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.
  • Zhuang Z; State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.
  • Wu J; State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.
  • Tang BZ; School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
  • Zhao Z; State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China. mszjzhao@scut.edu.cn.
Nat Commun ; 14(1): 6250, 2023 Oct 06.
Article em En | MEDLINE | ID: mdl-37802995
ABSTRACT
Voltage-gated processing units are fundamental components for non-von Neumann architectures like memristor and electric synapses, on which nanoscale molecular electronics have possessed great potentials. Here, tailored foldamers with furan‒benzene stacking (f-Fu) and thiophene‒benzene stacking (f-Th) are designed to decipher electro-responsive through-space interaction, which achieve volatile memory behaviors via quantum interference switching in single-molecule junctions. f-Fu exhibits volatile turn-on feature while f-Th performs stochastic turn-off feature with low voltages as 0.2 V. The weakened orbital through-space mixing induced by electro-polarization dominates stacking malposition and quantum interference switching. f-Fu possesses higher switching probability and faster responsive time, while f-Th suffers incomplete switching and longer responsive time. High switching ratios of up to 91 for f-Fu is realized by electrochemical gating. These findings provide evidence and interpretation of the electro-responsiveness of non-covalent interaction at single-molecule level and offer design strategies of molecular non-von Neumann architectures like true random number generator.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China