Your browser doesn't support javascript.
loading
Efficient 2D to 0D Energy Transfer in HgTe Nanoplatelet-Quantum Dot Heterostructures through High-Speed Exciton Diffusion.
Tenney, Stephanie M; Tan, Lauren A; Tan, Xuanheng; Sonnleitner, Mikayla L; Coffey, Belle; Williams, Jillian A; Ronquillo, Ricky; Atallah, Timothy L; Ahmed, Tasnim; Caram, Justin R.
Afiliação
  • Tenney SM; Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States.
  • Tan LA; Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States.
  • Tan X; Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States.
  • Sonnleitner ML; Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States.
  • Coffey B; Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States.
  • Williams JA; Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States.
  • Ronquillo R; Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States.
  • Atallah TL; Department of Chemistry and Biochemistry, Denison University, 500 West Loop, Granville, Ohio 43023, United States.
  • Ahmed T; Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States.
  • Caram JR; Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States.
J Phys Chem Lett ; 14(42): 9456-9463, 2023 Oct 26.
Article em En | MEDLINE | ID: mdl-37830914
Large area absorbers with localized defect emission are of interest for energy concentration via the antenna effect. Transfer between 2D and 0D quantum-confined structures is advantageous as it affords maximal lateral area antennas with continuously tunable emission. We report the quantum efficiency of energy transfer in in situ grown HgTe nanoplatelet (NPL)/quantum dot (QD) heterostructures to be near unity (>85%), while energy transfer in separately synthesized and well separated solutions of HgTe NPLs to QDs only reaches 47 ± 11% at considerably higher QD concentrations. Using Kinetic Monte Carlo simulations, we estimate an exciton diffusion constant of 1-10 cm2/s in HgTe NPLs, the same magnitude as that of 2D semiconductors. We also simulate in-solution energy transfer between NPLs and QDs, recovering an R-4 dependence consistent with 2D-0D near-field energy transfer even in randomly distributed NPL/QD mixtures. This highlights the advantage of NPLs 2D morphology and the efficiency of NPL/QD heterostructures and mixtures for energy harvesting.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Phys Chem Lett Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Phys Chem Lett Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos