Your browser doesn't support javascript.
loading
Random survival forests with multivariate longitudinal endogenous covariates.
Devaux, Anthony; Helmer, Catherine; Genuer, Robin; Proust-Lima, Cécile.
Afiliação
  • Devaux A; Univ. Bordeaux, INSERM, BPH, U1219, Bordeaux, France.
  • Helmer C; The George Institute for Global Health, UNSW Sydney, Australia.
  • Genuer R; School of Population Health, UNSW Sydney, Australia.
  • Proust-Lima C; Univ. Bordeaux, INSERM, BPH, U1219, Bordeaux, France.
Stat Methods Med Res ; 32(12): 2331-2346, 2023 12.
Article em En | MEDLINE | ID: mdl-37886845
Predicting the individual risk of clinical events using the complete patient history is a major challenge in personalized medicine. Analytical methods have to account for a possibly large number of time-dependent predictors, which are often characterized by irregular and error-prone measurements, and are truncated early by the event. In this work, we extended the competing-risk random survival forests to handle such endogenous longitudinal predictors when predicting event probabilities. The method, implemented in the R package DynForest, internally transforms the time-dependent predictors at each node of each tree into time-fixed features (using mixed models) that can then be used as splitting candidates. The final individual event probability is computed as the average of leaf-specific Aalen-Johansen estimators over the trees. Using simulations, we compared the performances of DynForest to accurately predict an event with (i) a joint modeling alternative when considering two longitudinal predictors only, and with (ii) a regression calibration method that ignores the informative truncation by the event when dealing with a large number of longitudinal predictors. Through an application in dementia research, we also illustrated how DynForest can be used to develop a dynamic prediction tool for dementia from multimodal repeated markers, and quantify the importance of each marker.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Estatísticos / Demência Limite: Humans Idioma: En Revista: Stat Methods Med Res Ano de publicação: 2023 Tipo de documento: Article País de afiliação: França País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Estatísticos / Demência Limite: Humans Idioma: En Revista: Stat Methods Med Res Ano de publicação: 2023 Tipo de documento: Article País de afiliação: França País de publicação: Reino Unido