Your browser doesn't support javascript.
loading
Effect of glucose on growth and co-culture of Staphylococcus aureus and Pseudomonas aeruginosa in artificial sputum medium.
Vasiljevs, Stanislavs; Gupta, Arya; Baines, Deborah.
Afiliação
  • Vasiljevs S; Institute for Infection and Immunity, St George's University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK.
  • Gupta A; School of Health, Leeds Beckett University, Leeds, LS1 3HE, UK.
  • Baines D; Institute for Infection and Immunity, St George's University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK.
Heliyon ; 9(11): e21469, 2023 Nov.
Article em En | MEDLINE | ID: mdl-37908712
People with cystic fibrosis-related diabetes (CFRD) suffer from chronic infections with Staphylococcus aureus and/or Pseudomonas aeruginosa. In people with CFRD, the concentration of glucose in the airway surface liquid (ASL) was shown to be elevated from 0.4 to 4 mM. The effect of glucose on bacterial growth/interactions in ASL is not well understood and here we studied the relationship between these lung pathogens in artificial sputum medium (ASM), an environment similar to ASL in vivo. S. aureus exhibited more rapid adaptation to growth in ASM than P. aeruginosa. Supplementation of ASM with glucose significantly increased the growth of S. aureus (p < 0.01, n = 5) and P. aeruginosa (p < 0.001, n = 3). ASM conditioned by the presence of S. aureus promoted growth of P. aeruginosa with less lag time compared with non-conditioned ASM, or conditioned medium that had been heated to 121 °C. Stable co-culture of S. aureus and P. aeruginosa could be established in a 50:50 mix of ASM and S. aureus-conditioned supernatant. These data indicate that glucose, in a nutrient depleted environment, can promote the growth of S. aureus and P. aeruginosa. In addition, heat labile factors present in S. aureus pre-conditioned ASM promoted the growth of P. aeruginosa. We suggest that the use of ASM allows investigation of the effects of nutrients such as glucose on common lung pathogens. ASM could be further used to understand the relationship between S. aureus and P. aeruginosa in a co-culture scenario. Our model of stable co-culture could be extrapolated to include other common lung pathogens and could be used to better understand disease progression in vitro.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Heliyon Ano de publicação: 2023 Tipo de documento: Article País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Heliyon Ano de publicação: 2023 Tipo de documento: Article País de publicação: Reino Unido