Your browser doesn't support javascript.
loading
Masking the transmembrane region of the amyloid ß precursor protein as a safe means to lower amyloid ß production.
Khan, Ayesha; Killick, Richard; Wirth, Daniel; Hoogland, Dominique; Hristova, Kalina; Ulmschneider, Jakob P; King, Christopher R; Ulmschneider, Martin B.
Afiliação
  • Khan A; EveBioTek Ltd. Trimble House Warrington UK.
  • Killick R; Living Systems Institute University of Exeter Exeter UK.
  • Wirth D; King's College London Maurice Wohl Clinical Neuroscience Institute Camberwell London UK.
  • Hoogland D; Department of Materials Science and Engineering and Institute for NanoBioTechnology Johns Hopkins University Baltimore Maryland USA.
  • Hristova K; Department of Chemistry King's College London London UK.
  • Ulmschneider JP; Department of Materials Science and Engineering and Institute for NanoBioTechnology Johns Hopkins University Baltimore Maryland USA.
  • King CR; Institute of Natural Sciences Shanghai Jiao-Tong University Shanghai China.
  • Ulmschneider MB; National Institutes of Health National Institute of Neurological Disorders and Stroke Bethesda Maryland USA.
Alzheimers Dement (N Y) ; 9(4): e12428, 2023.
Article em En | MEDLINE | ID: mdl-37954165
Introduction: Reducing brain levels of both soluble and insoluble forms of amyloid beta (Aß) remains the primary goal of most therapies that target Alzheimer's disease (AD). However, no treatment has so far resulted in patient benefit, and clinical trials of the most promising drug candidates have generally failed due to significant adverse effects. This highlights the need for safer and more selective ways to target and modulate Aß biogenesis. Methods: Peptide technology has advanced to allow reliable synthesis, purification, and delivery of once-challenging hydrophobic sequences. This is opening up new routes to target membrane processes associated with disease. Here we deploy a combination of atomic detail molecular dynamics (MD) simulations, living-cell Förster resonance energy transfer (FRET), and in vitro assays to elucidate the atomic-detail dynamics, molecular mechanisms, and cellular activity and selectivity of a membrane-active peptide that targets the Aß precursor protein (APP). Results: We demonstrate that Aß biogenesis can be downregulated selectively using an APP occlusion peptide (APPOP). APPOP inhibits Aß production in a dose-dependent manner, with a mean inhibitory concentration (IC50) of 450 nM toward exogenous APP and 50 nM toward endogenous APP in primary rat cortical neuronal cultures. APPOP does not impact the γ-secretase cleavage of Notch-1, or exhibit toxicity toward cultured primary rat neurons, suggesting that it selectively shields APP from proteolysis. Discussion: Drugs targeting AD need to be given early and for very long periods to prevent the onset of clinical symptoms. This necessitates being able to target Aß production precisely and without affecting the activity of key cellular enzymes such as γ-secretase for other substrates. Peptides offer a powerful way for targeting key pathways precisely, thereby reducing the risk of adverse effects. Here we show that protecting APP from proteolytic processing offers a promising route to safely and specifically lower Aß burden. In particular, we show that the amyloid pathway can be targeted directly and specificically. This reduces the risk of off-target effects and paves the way for a safe prophylactic treatment.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Alzheimers Dement (N Y) Ano de publicação: 2023 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Alzheimers Dement (N Y) Ano de publicação: 2023 Tipo de documento: Article País de publicação: Estados Unidos