The Impact of Ambient Temperature on Electrothermal Characteristics in Stacked Nanosheet Transistors with Multiple Lateral Stacks.
Nanomaterials (Basel)
; 13(22)2023 Nov 18.
Article
em En
| MEDLINE
| ID: mdl-37999325
With characteristic size scaling down to the nanoscale range, the confined geometry exacerbates the self-heating effect (SHE) in nanoscale devices. In this paper, the impact of ambient temperature (Tamb) on the SHE in stacked nanosheet transistors is investigated. As the number of lateral stacks (Nstack) increases, the nanoscale devices show more severe thermal crosstalk issues, and the current performance between n- and p-type nanoscale transistors exhibits different degradation trends. To compare the effect of different Tamb ranges, the temperature coefficients of current per stack and threshold voltage are analyzed. As the Nstack increases from 4 to 32, it is verified that the zero-temperature coefficient bias point (VZTC) decreases significantly in p-type nanoscale devices when Tamb is above room temperature. This can be explained by the enhanced thermal crosstalk. Then, the gate length-dependent electrothermal characteristics with different Nstacks are investigated at various Tambs. To explore the origin of drain current variation, the temperature-dependent backscattering model is utilized to explain the variation. At last, the simulation results verify the impact of Tamb on the SHE. The study provides an effective design guide for stacked nanosheet transistors when considering multiple stacks in circuit applications.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Nanomaterials (Basel)
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
China
País de publicação:
Suíça