Your browser doesn't support javascript.
loading
A Radiomics Approach to Identify Immunologically Active Tumor in Patients with Head and Neck Squamous Cell Carcinomas.
Nguyen, Tan Mai; Bertolus, Chloé; Giraud, Paul; Burgun, Anita; Saintigny, Pierre; Bibault, Jean-Emmanuel; Foy, Jean-Philippe.
Afiliação
  • Nguyen TM; Sorbonne Université, Department of Maxillo-Facial Surgery, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France.
  • Bertolus C; Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France.
  • Giraud P; INSERM, UMR S1138, Cordeliers Research Center, Université Paris Cité, 75005 Paris, France.
  • Burgun A; Sorbonne Université, Department of Maxillo-Facial Surgery, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France.
  • Saintigny P; Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France.
  • Bibault JE; INSERM, UMR S1138, Cordeliers Research Center, Université Paris Cité, 75005 Paris, France.
  • Foy JP; Sorbonne Université, Department of Radiation Oncology, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France.
Cancers (Basel) ; 15(22)2023 Nov 11.
Article em En | MEDLINE | ID: mdl-38001629
ABSTRACT

BACKGROUND:

We recently developed a gene-expression-based HOT score to identify the hot/cold phenotype of head and neck squamous cell carcinomas (HNSCCs), which is associated with the response to immunotherapy. Our goal was to determine whether radiomic profiling from computed tomography (CT) scans can distinguish hot and cold HNSCC.

METHOD:

We included 113 patients from The Cancer Genome Atlas (TCGA) and 20 patients from the Groupe Hospitalier Pitié-Salpêtrière (GHPS) with HNSCC, all with available pre-treatment CT scans. The hot/cold phenotype was computed for all patients using the HOT score. The IBEX software (version 4.11.9, accessed on 30 march 2020) was used to extract radiomic features from the delineated tumor region in both datasets, and the intraclass correlation coefficient (ICC) was computed to select robust features. Machine learning classifier models were trained and tested in the TCGA dataset and validated using the area under the receiver operator characteristic curve (AUC) in the GHPS cohort.

RESULTS:

A total of 144 radiomic features with an ICC >0.9 was selected. An XGBoost model including these selected features showed the best performance prediction of the hot/cold phenotype with AUC = 0.86 in the GHPS validation dataset. CONCLUSIONS AND RELEVANCE We identified a relevant radiomic model to capture the overall hot/cold phenotype of HNSCC. This non-invasive approach could help with the identification of patients with HNSCC who may benefit from immunotherapy.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Cancers (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: França País de publicação: CH / SUIZA / SUÍÇA / SWITZERLAND

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Cancers (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: França País de publicação: CH / SUIZA / SUÍÇA / SWITZERLAND