Your browser doesn't support javascript.
loading
Paediatric orthopaedic expert system.
Lau, Chia Fong; Malek, Sorayya; Gunalan, Roshan; Saw, Aik; Milow, Pozi; Song, Cheen.
Afiliação
  • Lau CF; Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.
  • Malek S; Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.
  • Gunalan R; Department of Orthopaedics / NOCERAL, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
  • Saw A; Department of Orthopaedics / NOCERAL, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
  • Milow P; Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.
  • Song C; Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.
Health Informatics J ; 29(4): 14604582231218530, 2023.
Article em En | MEDLINE | ID: mdl-38019888
The paediatric orthopaedic expert system analyses and predicts the healing time of limb fractures in children using machine learning. As far we know, no published research on the paediatric orthopaedic expert system that predicts paediatric fracture healing time using machine learning has been published. The University Malaya Medical Centre (UMMC) offers paediatric orthopaedic data, comprises children under the age of 12 radiographs limb fractures with ages recorded from the date and time of initial trauma. SVR algorithms are used to predict and discover variables associated with fracture healing time. This study developed an expert system capable of predicting healing time, which can assist general practitioners and healthcare practitioners during treatment and follow-up. The system is available online at https://kidsfractureexpert.com/.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ortopedia Limite: Child / Humans País/Região como assunto: Asia Idioma: En Revista: Health Informatics J Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Malásia País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ortopedia Limite: Child / Humans País/Região como assunto: Asia Idioma: En Revista: Health Informatics J Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Malásia País de publicação: Reino Unido