Large-scale production of MXenes as nanoknives for antibacterial application.
Nanoscale Adv
; 5(23): 6572-6581, 2023 Nov 21.
Article
em En
| MEDLINE
| ID: mdl-38024301
Antimicrobial resistance of existing antibacterial agents has become a pressing issue for human health and demands effective antimicrobials beyond conventional antibacterial mechanisms. Two-dimensional (2D) nanomaterials have attracted considerable interest for this purpose. However, obtaining a high yield of 2D nanomaterials with a designed morphology for effective antibacterial activity remains exceptionally challenging. In this study, an efficient one-step mechanical exfoliation (ECO-ME) method has been developed for rapidly preparing Ti3C2 MXenes with a concentration of up to 30 mg mL-1. This synthetic pathway involving mechanical force endows E-Ti3C2 MXene prepared by the ECO-ME method with numerous irregular sharp edges, resulting in a unique nanoknife effect that can successfully disrupt the bacterial cell wall, demonstrating better antibacterial activity than the MXenes prepared by conventional wet chemical etching methods. Overall, this study provides a simple and effective method for preparing MXenes on a large scale, and its antibacterial effects demonstrate great potential for E-Ti3C2 in environmental and biomedical applications.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Nanoscale Adv
Ano de publicação:
2023
Tipo de documento:
Article
País de publicação:
Reino Unido