Your browser doesn't support javascript.
loading
miR-1182-mediated ALDH3A2 inhibition affects lipid metabolism and progression in ccRCC by activating the PI3K-AKT pathway.
Lv, Qingyang; Shi, Jian; Miao, Daojia; Tan, Diaoyi; Zhao, Chuanyi; Xiong, Zhiyong; Zhang, Xiaoping.
Afiliação
  • Lv Q; Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
  • Shi J; Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
  • Miao D; Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
  • Tan D; Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
  • Zhao C; Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
  • Xiong Z; Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China. Electronic address: tjxiongzhiyon
  • Zhang X; Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China. Electronic address: xzhang@hust.e
Transl Oncol ; 40: 101835, 2024 Feb.
Article em En | MEDLINE | ID: mdl-38039946
ABSTRACT
In clear cell renal cell carcinoma (ccRCC), dysregulated lipid metabolism plays a pivotal role in tumor initiation and progression. This study delves into the unexplored landscape of Dysregulated Aldehyde Dehydrogenase 3 Family Member A2 (ALDH3A2) in ccRCC. Using a combination of "fatty acid metabolism" dataset analysis and differentially expressed genes (DEGs) derived from Gene Expression Omnibus (GEO) database, potential metabolic regulators in ccRCC were identified. Subsequent investigations utilizing public databases, clinical samples, and in vitro experiments revealed that ALDH3A2 was down-regulated in ccRCC, mediated by miR-1182, highlighting its role as an independent prognostic factor for patient survival. Functionally, ALDH3A2 exhibited tumor-suppressive properties, impacting ccRCC cell phenotypes and influencing epithelial-mesenchymal transition. Mechanistically, silencing ALDH3A2 promoted lipid accumulation in ccRCC cells by activating the PI3K-AKT pathway, thereby promoting tumor progression. These findings shed light on the critical role of the miR-1182/ALDH3A2 axis in ccRCC tumorigenesis, emphasizing the potential for targeting lipid metabolism as a promising anti-cancer strategy.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Transl Oncol Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Transl Oncol Ano de publicação: 2024 Tipo de documento: Article