Your browser doesn't support javascript.
loading
Integrating artificial intelligence and wing geometric morphometry to automate mosquito classification.
de Lima, Vinicio Rodrigues; de Morais, Mauro César Cafundó; Kirchgatter, Karin.
Afiliação
  • de Lima VR; Programa de Pós-Graduação em Medicina Tropical, Faculdade de Medicina, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, SP 05403-000, Brazil.
  • de Morais MCC; Instituto Israelita de Ensino e Pesquisa Albert Einstein (IIEPAE), Sociedade Beneficente Israelita Brasileira Albert Einstein (SBIBAE), São Paulo, SP, Brazil; Computational Systems Biology Laboratory (CSBL), Institut Pasteur de São Paulo, São Paulo, SP 05508-020, Brazil.
  • Kirchgatter K; Programa de Pós-Graduação em Medicina Tropical, Faculdade de Medicina, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, SP 05403-000, Brazil; Laboratório de Bioquímica e Biologia Molecular, Instituto Pasteur, São Paulo, SP 01027-000, Brazil. Electronic address: karink@usp.br.
Acta Trop ; 249: 107089, 2024 Jan.
Article em En | MEDLINE | ID: mdl-38043672
ABSTRACT
Mosquitoes (Diptera Culicidae) comprise over 3500 global species, primarily in tropical regions, where the females act as disease vectors. Thus, identifying medically significant species is vital. In this context, Wing Geometric Morphometry (WGM) emerges as a precise and accessible method, excelling in species differentiation through mathematical approaches. Computational technologies and Artificial Intelligence (AI) promise to overcome WGM challenges, supporting mosquito identification. AI explores computers' thinking capacity, originating in the 1950s. Machine Learning (ML) arose in the 1980s as a subfield of AI, and deep Learning (DL) characterizes ML's subcategory, featuring hierarchical data processing layers. DL relies on data volume and layer adjustments. Over the past decade, AI demonstrated potential in mosquito identification. Various studies employed optical sensors, and Convolutional Neural Networks (CNNs) for mosquito identification, achieving average accuracy rates between 84 % and 93 %. Furthermore, larval Aedes identification reached accuracy rates of 92 % to 94 % using CNNs. DL models such as ResNet50 and VGG16 achieved up to 95 % accuracy in mosquito identification. Applying CNNs to georeference mosquito photos showed promising results. AI algorithms automated landmark detection in various insects' wings with repeatability rates exceeding 90 %. Companies have developed wing landmark detection algorithms, marking significant advancements in the field. In this review, we discuss how AI and WGM are being combined to identify mosquito species, offering benefits in monitoring and controlling mosquito populations.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Inteligência Artificial / Aedes Limite: Animals Idioma: En Revista: Acta Trop Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Brasil País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Inteligência Artificial / Aedes Limite: Animals Idioma: En Revista: Acta Trop Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Brasil País de publicação: Holanda