Your browser doesn't support javascript.
loading
Labile carbon inputs boost microbial contribution to legacy mercury reduction and emissions from industry-polluted soils.
Hao, Xiuli; Zhao, Qianqian; Zhou, Xinquan; Huang, Qiaoyun; Liu, Yu-Rong.
Afiliação
  • Hao X; National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural Universi
  • Zhao Q; National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
  • Zhou X; National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
  • Huang Q; National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural Universi
  • Liu YR; National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural Universi
J Hazard Mater ; 465: 133122, 2024 Mar 05.
Article em En | MEDLINE | ID: mdl-38056276
Soils is a crucial reservoir influencing mercury (Hg) emissions and soil-air exchange dynamics, partially modulated by microbial reducers aiding Hg reduction. Yet, the extent to which microbial engagements contribute to soil Hg volatilization remains largely unknown. Here, we characterized Hg-reducing bacterial communities in natural and anthropogenically perturbed soil environments and quantified their contribution to soil Hg(0) volatilization. Our results revealed distinct Hg-reducing bacterial compositions alongside elevated mercuric reductase (merA) gene abundance and diversity in soils adjacent to chemical factories compared to less-impacted ecosystems. Notably, solely industry-impacted soils exhibited increased merA gene abundance along Hg gradients, indicating microbial adaption to Hg selective pressure through quantitative changes in Hg reductase and genetic diversity. Microcosm studies demonstrated that glucose inputs boosted microbial involvement and induced 2-8 fold increments in cumulative Hg(0) volatilization in industry-impacted soils. Microbially-mediated Hg reduction contributed to 41.6% of soil Hg(0) volatilization in industry-impacted soils under 25% water-holding capacity and glucose input conditions over a 21-day incubation period. Alcaligenaceae, Moraxellaceae, Nitrosomonadaceae and Shewanellaceae were identified as potential contributors to Hg(0) volatilization in the soil. Collectively, our study provides novel insights into microbially-mediated Hg reduction and soil-air exchange processes, with important implications for risk assessment and management of industrial Hg-contaminated soils.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes do Solo / Mercúrio Idioma: En Revista: J Hazard Mater Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2024 Tipo de documento: Article País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes do Solo / Mercúrio Idioma: En Revista: J Hazard Mater Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2024 Tipo de documento: Article País de publicação: Holanda