Your browser doesn't support javascript.
loading
Not all silicon quantum dots are equal: photostability of silicon quantum dots with and without a thick amorphous shell.
Cheong, I Teng; Yang Szepesvari, LiYifan; Ni, Chuyi; Butler, Cole; O'Connor, Kevin M; Hooper, Riley; Meldrum, Alkiviathes; Veinot, Jonathan G C.
Afiliação
  • Cheong IT; Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada. jveinot@ualberta.ca.
  • Yang Szepesvari L; Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada. jveinot@ualberta.ca.
  • Ni C; Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada. jveinot@ualberta.ca.
  • Butler C; Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada. jveinot@ualberta.ca.
  • O'Connor KM; Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada. jveinot@ualberta.ca.
  • Hooper R; Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada. jveinot@ualberta.ca.
  • Meldrum A; Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.
  • Veinot JGC; Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada. jveinot@ualberta.ca.
Nanoscale ; 16(2): 592-603, 2024 Jan 03.
Article em En | MEDLINE | ID: mdl-38058198
ABSTRACT
Luminescent colloidal silicon quantum dots (SiQDs) are sustainable alternatives to metal-based QDs for various optical applications. While the materials are reliant on their photoluminescence efficiency, the relationship between the structure and photostability of SiQDs is yet to be well studied. An amorphous silicon (a-Si) shell was recently discovered in SiQDs prepared by thermally-processed silicon oxides. As a-Si is known as a source of defects upon UV irradiation, the disordered shell could potentially have an adverse effect on the optical properties of nanoparticles. Herein, the photostability of ∼5 nm diameter SiQDs with an amorphous shell was compared with that of over-etched SiQDs of equivalent dimensions that bore an a-Si shell of negligible thickness. An UV-induced degradation study was conducted by subjecting toluene solutions of SiQDs to 365 nm light-emitting diodes (LEDs) under an inert atmosphere for predetermined times up to 72 hours. The structure, composition, and optical responses of the exposed SiQDs were evaluated.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanoscale Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Canadá

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanoscale Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Canadá