Your browser doesn't support javascript.
loading
Testing foraging optimization models in brown bears: Time for a paradigm shift in nutritional ecology?
Mikkelsen, Ashlee J; Hobson, Keith A; Sergiel, Agnieszka; Hertel, Anne G; Selva, Nuria; Zedrosser, Andreas.
Afiliação
  • Mikkelsen AJ; Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Bø, Norway.
  • Hobson KA; Environment and Climate Change Canada, Saskatoon, Saskatchewan, Canada.
  • Sergiel A; Department of Biology, University of Western Ontario, London, Ontario, Canada.
  • Hertel AG; Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland.
  • Selva N; Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Bø, Norway.
  • Zedrosser A; Department of Biology, Ludwig Maximilians University of Munich, Planegg, Germany.
Ecology ; 105(2): e4228, 2024 Feb.
Article em En | MEDLINE | ID: mdl-38071743
ABSTRACT
How organisms obtain energy to survive and reproduce is fundamental to ecology, yet researchers use theoretical concepts represented by simplified models to estimate diet and predict community interactions. Such simplistic models can sometimes limit our understanding of ecological principles. We used a polyphagous species with a wide distribution, the brown bear (Ursus arctos), to illustrate how disparate theoretical frameworks in ecology can affect conclusions regarding ecological communities. We used stable isotope measurements (δ13 C, δ15 N) from hairs of individually monitored bears in Sweden and Bayesian mixing models to estimate dietary proportions of ants, moose, and three berry species to compare with other brown bear populations. We also developed three hypotheses based on predominant foraging literature, and then compared predicted diets to field estimates. Our three models assumed (1) bears forage to optimize caloric efficiency (optimum foraging model), predicting bears predominately eat berries (~70% of diet) and opportunistically feed on moose (Alces alces) and ants (Formica spp. and Camponotus spp; ~15% each); (2) bears maximize meat intake (maximizing fitness model), predicting a diet of 35%-50% moose, followed by ants (~30%), and berries (~15%); (3) bears forage to optimize macronutrient balance (macronutrient model), predicting a diet of ~22% (dry weight) or 17% metabolizable energy from proteins, with the rest made up of carbohydrates and lipids (~49% and 29% dry matter or 53% and 30% metabolizable energy, respectively). Bears primarily consumed bilberries (Vaccinium myrtillus; 50%-55%), followed by lingonberries (V. vitis-idaea; 22%-30%), crowberries (Empetrum nigrum; 8%-15%), ants (5%-8%), and moose (3%-4%). Dry matter dietary protein was lower than predicted by the maximizing fitness model and the macronutrient balancing model, but protein made up a larger proportion of the metabolizable energy than predicted. While diets most closely resembled predictions from optimal foraging theory, none of the foraging hypotheses fully described the relationship between foraging and ecological niches in brown bears. Acknowledging and broadening models based on foraging theories is more likely to foster novel discoveries and insights into the role of polyphagous species in ecosystems and we encourage this approach.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Formigas / Ursidae Limite: Animals Idioma: En Revista: Ecology Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Noruega País de publicação: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Formigas / Ursidae Limite: Animals Idioma: En Revista: Ecology Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Noruega País de publicação: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA