Your browser doesn't support javascript.
loading
Composite poly(ethylene oxide)-based solid electrolyte with consecutive and fast ion transport channels constructed by upper-dimensional MIL-53(Al) nanofibers.
Wang, Liyuan; Xie, Liyuan; Dong, Lingli; Wang, Zhitao; Li, Linpo; Shangguan, Enbo; Li, Jing; Gao, Shengbo.
Afiliação
  • Wang L; Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China. Electronic address: wangliyuan@htu.edu.cn.
  • Xie L; Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China.
  • Dong L; Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China.
  • Wang Z; Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China.
  • Li L; Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China.
  • Shangguan E; Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China.
  • Li J; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China.
  • Gao S; Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China.
J Colloid Interface Sci ; 657: 632-643, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38071812
ABSTRACT
Novel structural designs for metal organic frameworks (MOFs) are expected to improve ion-transport behavior in composite solid electrolytes. Herein, upper-dimensional MIL-53(Al) nanofibers (MNFs, MIL-53 belongs to the MIL (Material Institute Lavoisier) group) with flower-like nanoflake structures have been designed and constructed via modified hydrothermal coordination. The optimized MNFs with high surface area and porosity can form abundant interfaces with poly(ethylene oxide) (PEO) matrix. The plasticization of MNFs to the PEO matrix will facilitate segmental movement of PEO chains to facilitate Li+ conduction. The unsaturated open metal centers of MNFs can effectively capture bis(trifluoromethanesulfonyl)imide anions (TFSI-) to deliver more free lithium ions for transfer. Moreover, the upper-dimensional nanofiber structure endows lithium ions with a long-range and consecutive transport pathway. The obtained composite solid electrolyte (MNFs@PEO) presents a high ionic conductivity of 4.1 × 10-4 S cm-1 and a great Li+ transference number of 0.4 at 60 °C. The electrolyte also exhibits a stable Li plating/stripping behavior over 1000 h at 0.1 mA cm-1 with inhibited Li dendrite growth. Furthermore, the Li/LiFePO4 and Li/LiNi0.8Mn0.1Co0.1O2 batteries with MNFs@PEO as electrolytes both display great cycling stabilities with high-capacity retention, indicating their potential applications in lithium metal batteries. The study will put forward new inspirations for designing advanced MOF-based composite solid electrolytes.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Colloid Interface Sci Ano de publicação: 2024 Tipo de documento: Article País de publicação: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Colloid Interface Sci Ano de publicação: 2024 Tipo de documento: Article País de publicação: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA