Your browser doesn't support javascript.
loading
Sex-specific increases in myostatin and SMAD3 contribute to obesity-related insulin resistance in human skeletal muscle and primary human myotubes.
Saxena, Gunjan; Gallagher, Sean; Law, Timothy D; Maschari, Dominic; Walsh, Erin; Dudley, Courtney; Brault, Jeffrey J; Consitt, Leslie A.
Afiliação
  • Saxena G; Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States.
  • Gallagher S; Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States.
  • Law TD; Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, Ohio, United States.
  • Maschari D; College of Health Sciences and Professions, Ohio University, Athens, Ohio, United States.
  • Walsh E; Biological Sciences Department, Ohio University, Athens, Ohio, United States.
  • Dudley C; Biological Sciences Department, Ohio University, Athens, Ohio, United States.
  • Brault JJ; Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States.
  • Consitt LA; Indiana Center for Musculoskeletal Health, Indianapolis, Indiana, United States.
Am J Physiol Endocrinol Metab ; 326(3): E352-E365, 2024 Mar 01.
Article em En | MEDLINE | ID: mdl-38088865
ABSTRACT
The purpose of the present study was to determine the effects of obesity and biological sex on myostatin expression in humans and to examine the direct effects of myostatin, SMAD2, and SMAD3 on insulin signaling in primary human skeletal muscle cells (HSkMCs). For cohort 1, 15 lean [body mass index (BMI) 22.1 ± 0.5 kg/m2; n = 8 males; n = 7 females] and 14 obese (BMI 40.6 ± 1.4 kg/m2; n = 7 males; n = 7 females) individuals underwent skeletal muscle biopsies and an oral glucose tolerance test. For cohort 2, 14 young lean (BMI 22.4 ± 1.9 kg/m2; n = 6 males; n = 8 females) and 14 obese (BMI 39.3 ± 7.9 kg/m2; n = 6 males; n = 8 females) individuals underwent muscle biopsies for primary HSkMC experiments. Plasma mature myostatin (P = 0.041), skeletal muscle precursor myostatin (P = 0.048), and skeletal muscle SMAD3 (P = 0.029) were elevated in obese females compared to lean females, and plasma mature myostatin (r = 0.58, P = 0.029) and skeletal muscle SMAD3 (r = 0.56, P = 0.037) were associated with insulin resistance in females but not males. Twenty-four hours of myostatin treatment impaired insulin signaling in primary HSkMCs derived from females (P < 0.024) but not males. Overexpression of SMAD3, but not SMAD2, impaired insulin-stimulated AS160 phosphorylation in HSkMCs derived from lean females (-27%, P = 0.040), whereas silencing SMAD3 improved insulin-stimulated AS160 phosphorylation and insulin-stimulated glucose uptake (25%, P < 0.014) in HSkMCs derived from obese females. These results suggest for the first time that myostatin-induced impairments in skeletal muscle insulin signaling are sex specific and that increased body fat in females is associated with detrimental elevations in myostatin and SMAD3, which contribute to obesity-related insulin resistance.NEW & NOTEWORTHY Obesity is considered a main risk factor for the development of insulin resistance and type 2 diabetes. The present study utilizes in vivo and in vitro experiments in human skeletal muscle to demonstrate for the first time that females are inherently more susceptible to myostatin-induced insulin resistance, which is further enhanced with obesity due to increased myostatin and SMAD3 expression.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Resistência à Insulina / Diabetes Mellitus Tipo 2 Limite: Female / Humans / Male Idioma: En Revista: Am J Physiol Endocrinol Metab Assunto da revista: ENDOCRINOLOGIA / FISIOLOGIA / METABOLISMO Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Resistência à Insulina / Diabetes Mellitus Tipo 2 Limite: Female / Humans / Male Idioma: En Revista: Am J Physiol Endocrinol Metab Assunto da revista: ENDOCRINOLOGIA / FISIOLOGIA / METABOLISMO Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos
...