Your browser doesn't support javascript.
loading
Nanoscale Operando Characterization of Electrolyte-Gated Organic Field-Effect Transistors Reveals Charge Transport Bottlenecks.
Tanwar, Shubham; Millan-Solsona, Ruben; Ruiz-Molina, Sara; Mas-Torrent, Marta; Kyndiah, Adrica; Gomila, Gabriel.
Afiliação
  • Tanwar S; Nanoscale Bioelectrical Characterization Group, Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer Baldiri i Reixac 11-15, Barcelona, 08028, Spain.
  • Millan-Solsona R; Nanoscale Bioelectrical Characterization Group, Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer Baldiri i Reixac 11-15, Barcelona, 08028, Spain.
  • Ruiz-Molina S; Department d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, Carrer Martí i Franquès, 1, Barcelona, 08028, Spain.
  • Mas-Torrent M; Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB Cerdanyola del Vallès, Barcelona, 08193, Spain.
  • Kyndiah A; Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB Cerdanyola del Vallès, Barcelona, 08193, Spain.
  • Gomila G; Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy.
Adv Mater ; 36(13): e2309767, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38110297
ABSTRACT
Charge transport in electrolyte-gated organic field-effect transistors (EGOFETs) is governed by the microstructural property of the semiconducting thin film that is in direct contact with the electrolyte. Therefore, a comprehensive nanoscale operando characterization of the active channel is crucial to pinpoint various charge transport bottlenecks for rational and targeted optimization of the devices. Here, the local electrical properties of EGOFETs are systematically probed by in-liquid scanning dielectric microscopy (in-liquid SDM) and a direct picture of their functional mechanism at the nanoscale is provided across all operational regimes, starting from subthreshold, linear to saturation, until the onset of pinch-off. To this end, a robust interpretation framework of in-liquid SDM is introduced that enables quantitative local electric potential mapping directly from raw experimental data without requiring calibration or numerical simulations. Based on this development, a straightforward nanoscale assessment of various charge transport bottlenecks is performed, like contact access resistances, inter- and intradomain charge transport, microstructural inhomogeneities, and conduction anisotropy, which have been inaccessible earlier. Present results contribute to the fundamental understanding of charge transport in electrolyte-gated transistors and promote the development of direct structure-property-function relationships to guide future design rules.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Mater Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Espanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Mater Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Espanha