Your browser doesn't support javascript.
loading
Target Separation and Potential Anticancer Activity of Withanolide-Based Glucose Transporter Protein 1 Inhibitors from Physalis angulata var. villosa.
Zhang, Jinghan; Xu, Xiao; Zhao, Yu; Ren, Chunling; Gu, Mengzhen; Zhang, Haili; Wu, Peiye; Wang, Yun; Kong, Lingyi; Han, Chao.
Afiliação
  • Zhang J; State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P.R. China.
  • Xu X; State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P.R. China.
  • Zhao Y; State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P.R. China.
  • Ren C; State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P.R. China.
  • Gu M; State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P.R. China.
  • Zhang H; State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P.R. China.
  • Wu P; State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P.R. China.
  • Wang Y; State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P.R. China.
  • Kong L; State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P.R. China.
  • Han C; State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P.R. China.
J Nat Prod ; 87(1): 2-13, 2024 01 26.
Article em En | MEDLINE | ID: mdl-38117981
ABSTRACT
The glucose transporter 1 (GLUT1) protein is involved in the basal-level absorption of glucose in tumor cells. Inhibiting GLUT1 decreases tumor cell proliferation and induces tumor cell damage. Natural GLUT1 inhibitors have been studied only to a small extent, and the structures of known natural GLUT1 inhibitors are limited to a few classes of natural products. Therefore, discovering and researching other natural GLUT1 inhibitors with novel scaffolds are essential. Physalis angulata L. var. villosa is a plant known as Mao-Ku-Zhi (MKZ). Withanolides are the main phytochemical components of MKZ. MKZ extracts and the components of MKZ exhibited antitumor activity in recent pharmacological studies. However, the antitumor-active components of MKZ and their molecular mechanisms remain unknown. A cell membrane-biomimetic nanoplatform (CM@Fe3O4/MIL-101) was used for target separation of potential GLUT1 inhibitors from MKZ. A new withanolide, physagulide Y (2), together with six known withanolides (1, 3-7), was identified as a potential GLUT1 inhibitor. Physagulide Y was the most potent GLUT1 inhibitor, and its antitumor activity and possible mechanism of action were explored in MCF-7 human cancer cells. These findings advance the development of technologies for the targeted separation of natural products and identify a new molecular framework for the investigation of natural GLUT1 inhibitors.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Physalis / Vitanolídeos / Antineoplásicos Fitogênicos Limite: Humans Idioma: En Revista: J Nat Prod Ano de publicação: 2024 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Physalis / Vitanolídeos / Antineoplásicos Fitogênicos Limite: Humans Idioma: En Revista: J Nat Prod Ano de publicação: 2024 Tipo de documento: Article País de publicação: Estados Unidos